Jump to content

Rice University discovers cheap & scalable Graphene production method

Just now, Bombastinator said:

Probably true.  I weep for humanity

You are too late!

Link to comment
Share on other sites

Link to post
Share on other sites

Just now, greenmax said:

You are too late!

I know.

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

49 minutes ago, Newenthusiast said:

Not really spread through the whole market though, like i purchased some 120AH deep cycle 12 volt Lithium batteries recently and there are no graphene ones ?‍♂️

That's how RC stuff works. They are always on the bleeding edge and the manufacturers can justify making it for them due to the demand and price people will pay. The RC world had Lipos and Lions years before laptops and phones thought about it

ƆԀ S₱▓Ɇ▓cs: i7 6ʇɥפᴉƎ00K (4.4ghz), Asus DeLuxe X99A II, GT҉X҉1҉0҉8҉0 Zotac Amp ExTrꍟꎭe),Si6F4Gb D???????r PlatinUm, EVGA G2 Sǝʌǝᘉ5ᙣᙍᖇᓎᙎᗅᖶt, Phanteks Enthoo Primo, 3TB WD Black, 500gb 850 Evo, H100iGeeTeeX, Windows 10, K70 R̸̢̡̭͍͕̱̭̟̩̀̀̃́̃͒̈́̈́͑̑́̆͘͜ͅG̶̦̬͊́B̸͈̝̖͗̈́, G502, HyperX Cloud 2s, Asus MX34. פN∩SW∀S 960 EVO

Just keeping this here as a backup 9̵̨̢̨̧̧̡̧̡̧̡̧̡̡̢̢̡̢̧̡̢̡̡̢̧̛̛̛̛̛̛̱̖͈̠̝̯̹͉̝̞̩̠̹̺̰̺̲̳͈̞̻̜̫̹̱̗̣͙̻̘͎̲̝͙͍͔̯̲̟̞͚̖̘͉̭̰̣͎͕̼̼̜̼͕͎̣͇͓͓͎̼̺̯͈̤̝͖̩̭͍̣̱̞̬̺̯̼̤̲͎̖̠̟͍̘̭͔̟̗̙̗̗̤̦͍̫̬͔̦̳̗̳͔̞̼̝͍̝͈̻͇̭̠͈̳͍̫̮̥̭͍͔͈̠̹̼̬̰͈̤͚̖̯͍͉͖̥̹̺͕̲̥̤̺̹̹̪̺̺̭͕͓̟̳̹͍̖͎̣̫͓͍͈͕̳̹̙̰͉͙̝̜̠̥̝̲̮̬͕̰̹̳͕̰̲̣̯̫̮͙̹̮͙̮̝̣͇̺̺͇̺̺͈̳̜̣̙̻̣̜̻̦͚̹̩͓͚̖͍̥̟͍͎̦͙̫̜͔̭̥͈̬̝̺̩͙͙͉̻̰̬̗̣͖̦͎̥̜̬̹͓͈͙̤̜̗͔̩̖̳̫̑̀̂̽̈́̈́̿͒̿̋̊͌̾̄̄̒̌͐̽̿̊͑̑̆͗̈̎̄͒̑̋͛̑͑̂͑̀͐̀͑̓͊̇͆̿͑͛͛͆́͆̓̿̇̀̓͑͆͂̓̾̏͊̀̇̍̃́̒̎̀̒̄̓̒̐̑̊̏̌̽̓͂͋̓̐̓͊̌͋̀̐̇̌̓̔͊̈̇́̏͒̋͊̓̆̋̈̀̌̔͆͑̈̐̈̍̀̉̋̈́͊̽͂̿͌͊̆̾̉͐̿̓̄̾͑̈́͗͗̂̂́̇͂̀̈́́̽̈́̓̓͂̽̓̀̄͌̐̔̄̄͒͌̈́̅̉͊̂͒̀̈́̌͂̽̀̑̏̽̀͑̐̐͋̀̀͋̓̅͋͗̍́͗̈́̆̏̇͊̌̏̔̑̐̈́͑̎͑͆̏̎́̑̍̏̒̌̊͘͘̚̕̚̕̕̚̕̚̕̕͜͜͜͜͜͝͝͠͠͝͝͝͝͝͝͝͠͝͝ͅͅͅͅͅͅͅ8̵̨̛̛̛̛̮͍͕̥͉̦̥̱̞̜̫̘̤̖̬͍͇͓̜̻̪̤̣̣̹̑͑̏̈́̐̐́̎͒̔͒̌̑̓̆̓͑̉̈́́͋̌͋͐͛͋̃̍̽̊͗͋͊̂̅͊͑́͋͛̉̏̓͌̾̈́̀͛͊̾͑̌̀̀̌̓̏̑́̄̉̌͂́͛̋͊̄͐͊̈́̀̌̆̎̿̓̔̍̎̀̍̚̕̕͘͘͘̕̚͝͝͠͠͠0̶̡̡̡̢̨̨͕̠̠͉̺̻̯̱̘͇̥͎͖̯͕̖̬̭͔̪̪͎̺̠̤̬̬̤̣̭̣͍̥̱̘̳̣̤͚̭̥͚̦͙̱̦͕̼͖͙͕͇̭͓͉͎̹̣̣͕̜͍͖̳̭͕̼̳̖̩͍͔̱̙̠̝̺̰̦̱̿̄̀͐͜͜ͅͅt̶̡̨̡̨̧̢̧̢̨̧̧̧̧̢̡̨̨̢̨̢̧̢̛̛̛̛̛̠͍̞̮͇̪͉̩̗̗͖̫͉͎͓̮̣̘̫͔̘̬̮̙̯̣͕͓̲̣͓͓̣̹̟͈̱͚̘̼̙̖̖̼̙̜̝͙̣̠̪̲̞̖̠̯̖̠̜̱͉̲̺͙̤̻̦̜͎̙̳̺̭̪̱͓̦̹̺͙̫̖̖̰̣͈͍̜̺̘͕̬̥͇̗̖̺̣̲̫̟̣̜̭̟̱̳̳̖͖͇̹̯̜̹͙̻̥̙͉͕̜͎͕̦͕̱͖͉̜̹̱̦͔͎̲̦͔̖̘̫̻̹̮̗̮̜̰͇̰͔̱͙̞̠͍͉͕̳͍̰̠̗̠̯̜̩͓̭̺̦̲̲͖̯̩̲̣̠͉̦̬͓̠̜̲͍̘͇̳̳͔̼̣͚̙͙͚͕̙̘̣̠͍̟̪̝̲͇͚̦̖͕̰̟̪͖̳̲͉͙̰̭̼̩̟̝̣̝̬̳͎̙̱͒̃̈͊̔͒͗̐̄̌͐͆̍͂̃̈́̾͗̅̐͒̓̆͛̂̾͋̍͂̂̄̇̿̈͌̅̈́̃̾̔̇̇̾̀͊͋̋̌̄͌͆͆̎̓̈́̾̊͊̇̌̔̈́̈́̀̐͊̊̍͑̊̈̓͑̀́̅̀̑̈́̽̃̽͛̇́̐̓̀͆̔̈̀̍̏̆̓̆͒̋́̋̍́̂̉͛̓̓̂̋̎́̒̏̈͋̃̽͆̓̀̔͑̈́̓͌͑̅̽́̐̍̉̑̓̈́͌̋̈́͂̊́͆͂̇̈́̔̃͌̅̈́͌͛̑̐̓̔̈́̀͊͛̐̾͐̔̾̈̃̈̄͑̓̋̇̉̉̚̕̚͘̕̚̚̕̕͜͜͜͜͜͜͜͜͜͜͜͜͜͝͝͝͠͝͝͝͝͝͠ͅͅͅͅͅi̵̢̧̢̧̡̧̢̢̧̢̢̢̡̡̡̧̧̡̡̧̛̛͈̺̲̫͕̞͓̥̖̭̜̫͉̻̗̭̖͔̮̠͇̩̹̱͈̗̭͈̤̠̮͙͇̲͙̰̳̹̲͙̜̟͚͎͓̦̫͚̻̟̰̣̲̺̦̫͓̖̯̝̬͉̯͓͈̫̭̜̱̞̹̪͔̤̜͙͓̗̗̻̟͎͇̺̘̯̲̝̫͚̰̹̫̗̳̣͙̮̱̲͕̺̠͉̫̖̟͖̦͉̟͈̭̣̹̱̖̗̺̘̦̠̯̲͔̘̱̣͙̩̻̰̠͓͙̰̺̠̖̟̗̖͉̞̣̥̝̤̫̫̜͕̻͉̺͚̣̝̥͇̭͎̖̦̙̲͈̲̠̹̼͎͕̩͓̖̥̘̱̜͙̹̝͔̭̣̮̗̞̩̣̬̯̜̻̯̩̮̩̹̻̯̬̖͂̈͂̒̇͗͑̐̌̎̑̽̑̈̈́͑̽́̊͋̿͊͋̅̐̈́͑̇̿̈́̌͌̊̅͂̎͆̏̓͂̈̿̏̃͑̏̓͆̔̋̎̕͘͘͘͜͜͜͜͜͜͜͝͝͠͠ͅͅͅͅͅͅͅͅͅZ̴̧̢̨̢̧̢̢̡̧̢̢̢̨̨̨̡̨̧̢̧̛̛̬̖͈̮̝̭̖͖̗̹̣̼̼̘̘̫̠̭̞͙͔͙̜̠̗̪̠̼̫̻͓̳̟̲̳̻̙̼͇̺͎̘̹̼͔̺̹̬̯̤̮̟͈̭̻͚̣̲͔͙̥͕̣̻̰͈̼̱̺̤̤͉̙̦̩̗͎̞͓̭̞̗͉̳̭̭̺̹̹̮͕̘̪̞̱̥͈̹̳͇̟̹̱̙͚̯̮̳̤͍̪̞̦̳̦͍̲̥̳͇̪̬̰̠͙͕̖̝̫̩̯̱̘͓͎̪͈̤̜͎̱̹̹̱̲̻͎̖̳͚̭̪̦̗̬͍̯̘̣̩̬͖̝̹̣̗̭͖̜͕̼̼̲̭͕͔̩͓̞̝͓͍̗̙̯͔̯̞̝̳̜̜͉̖̩͇̩̘̪̥̱͓̭͎͖̱̙̩̜͎̙͉̟͎͔̝̥͕͍͓̹̮̦̫͚̠̯͓̱͖͔͓̤͉̠͙̋͐̀͌̈́͆̾͆̑̔͂͒̀̊̀͋͑̂͊̅͐̿́̈́̐̀̏̋̃̄͆͒̈́̿̎́́̈̀̀͌̔͋͊̊̉̿͗͊͑̔͐̇͆͛̂̐͊̉̄̈́̄̐͂͂͒͑͗̓͑̓̾̑͋̒͐͑̾͂̎̋̃̽̂̅̇̿̍̈́́̄̍͂͑̏̐̾̎̆̉̾͂̽̈̆̔́͋͗̓̑̕͘̕͘͜͜͜͜͜͝͝͝͝͠͠͝ͅo̶̪͆́̀͂̂́̄̅͂̿͛̈́̿͊͗́͘͝t̴̡̨̧̨̧̡̧̨̡̢̧̢̡̨̛̪͈̣̭̺̱̪̹̺̣̬̖̣̻͈̞̙͇̩̻̫͈̝̭̟͎̻̟̻̝̱͔̝̼͍̞̼̣̘̤̯͓͉̖̠̤͔̜̙͚͓̻͓̬͓̻̜̯̱̖̳̱̗̠̝̥̩͓̗̪̙͓̖̠͎̗͎̱̮̯̮͙̩̫̹̹̖͙̙͖̻͈̙̻͇͔̙̣̱͔̜̣̭̱͈͕̠̹͙̹͇̻̼͎͍̥̘͙̘̤̜͎̟͖̹̦̺̤͍̣̼̻̱̲͎̗̹͉͙̪̞̻̹͚̰̻͈͈͊̈́̽̀̎̃̊́̈́̏̃̍̉̇̑̂̇̏̀͊̑̓͛̽͋̈́͆́̊͊̍͌̈́̓͊̌̿̂̾̐͑̓̀́͒̃̋̓͆̇̀͊̆͗̂͑͐̀͗̅̆͘̕͘̕̕͜͜͝͝͝͝͝͝͝ͅͅͅͅͅͅͅͅͅḁ̶̢̡̨̧̡̡̨̨̧̨̡̡̢̧̨̡̡̛̛̛͍̱̳͚͕̩͍̺̪̻̫̙͈̬͙̖͙̬͍̬̟̣̝̲̼̜̼̺͎̥̮̝͙̪̘̙̻͖͇͚͙̣̬̖̲̲̥̯̦̗̰̙̗̪̞̗̩̻̪̤̣̜̳̩̦̻͓̞̙͍͙̫̩̹̥͚̻̦̗̰̲̙̫̬̱̺̞̟̻͓̞͚̦̘̝̤͎̤̜̜̥̗̱͈̣̻̰̮̼̙͚͚̠͚̲̤͔̰̭̙̳͍̭͎̙͚͍̟̺͎̝͓̹̰̟͈͈̖̺͙̩̯͔̙̭̟̞̟̼̮̦̜̳͕̞̼͈̜͍̮͕̜͚̝̦̞̥̜̥̗̠̦͇͖̳͈̜̮̣͚̲̟͙̎̈́́͊̔̑̽̅͐͐͆̀͐́̓̅̈͑͑̍̿̏́͆͌̋̌̃̒̽̀̋̀̃̏̌́͂̿̃̎̐͊̒̀̊̅͒̎͆̿̈́̑̐̒̀̈́̓̾͋͆̇̋͒̎̈̄̓̂͊̆͂̈́̒̎͐̇̍̆̋̅̿̔͒̄̇̂̋̈́͆̎̔̇͊̊̈́̔̏͋́̀͂̈́̊͋͂̍̾̓͛̇̔̚͘̚̕̚͘͘̕̕̕̚͘͘̚̕̚̕͜͜͜͝͝͝͝͝͝͝͝ͅͅͅͅͅç̵̧̢̨̢̢̢̧̧̡̨̡̢̧̧̧̨̡̡̨̨̢̢̢̧̨̢̨̢̛̛͉̗̠͇̹̖̝͕͚͎̟̻͓̳̰̻̺̞̣͚̤͙͍͇̗̼͖͔͕͙͖̺͙̖̹̘̘̺͓̜͍̣̰̗̖̺̗̪̘̯̘͚̲͚̲̬̞̹̹͕̭͔̳̘̝̬͉̗̪͉͕̞̫͔̭̭̜͉͔̬̫͙̖̙͚͔͙͚͍̲̘͚̪̗̞̣̞̲͎͔͖̺͍͎̝͎͍̣͍̩̟͈͕̗͉̪̯͉͎͖͍̖͎̖̯̲̘̦̟̭͍͚͓͈͙̬͖̘̱̝̜̘̹̩̝̥̜͎̬͓̬͙͍͇͚̟̫͇̬̲̥̘̞̘̟̘̝̫͈̙̻͇͎̣̪̪̠̲͓͉͙͚̭̪͇̯̠̯̠͖̞̜͓̲͎͇̼̱̦͍͉͈͕͉̗̟̖̗̱̭͚͎̘͓̬͍̱͍̖̯̜̗̹̰̲̩̪͍̞̜̫̩̠͔̻̫͍͇͕̰̰̘͚͈̠̻̮͊̐̿̏̐̀̇̑̐̈͛͑͑̍̑̔̃̈́̓̈́̇̐͑̐̊̆͂̀̏͛̊̔̍̽͗͋̊̍̓̈́̏̅͌̀̽́̑͒͒̓͗̈́̎͌͂̕̚͘͘͜͜͜͜͜͠͝͝͝͝ͅͅͅͅͅͅͅS̵̡̡̧̧̨̨̡̢̡̡̡̡̧̧̡̧̢̫̯͔̼̲͉͙̱̮̭̗͖̯̤͙̜͚̰̮̝͚̥̜̞̠̤̺̝͇̻̱͙̩̲̺͍̳̤̺̖̝̳̪̻̗̮̪̖̺̹̭͍͇̗̝̱̻̳̝̖̝͎̙͉̞̱̯̙̜͇̯̻̞̱̭̗͉̰̮̞͍̫̺͙͎̙̞̯̟͓͉̹̲͖͎̼̫̩̱͇̲͓̪͉̺̞̻͎̤̥̭̺̘̻̥͇̤̖̰̘̭̳̫̙̤̻͇̪̦̭̱͎̥̟͖͕̣̤̩̟̲̭̹̦̹̣͖̖͒̈́̈́̓͗̈̄͂̈́̅̐̐̿̎̂͗̎̿̕͘͜͜͜͜͝͝ͅͅt̸̡̡̧̧̨̡̢̛̥̥̭͍̗͈̩͕͔͔̞̟͍̭͇̙̺̤͚͎͈͎͕̱͈̦͍͔͓̬͚̗̰̦͓̭̰̭̎̀̂̈́̓̒̈́̈́̂̄̋́̇̂͐͒̋̋̉͐̉̏̇͋̓̈́͐̾͋̒͒͐̊̊̀̄͆̄͆̑͆̇̊̓̚̚̕̚̕͜͠͝͝ͅͅơ̵̡̨̡̡̡̨̛̺͕̼͔̼̪̳͖͓̠̘̘̳̼͚͙͙͚̰͚͚͖̥̦̥̘̖̜̰͔̠͕̦͎̞̮͚͕͍̤̠̦͍̥̝̰̖̳̫̮̪͇̤̱̜͙͔̯͙̙̼͇̹̥̜͈̲̺̝̻̮̬̼̫̞̗̣̪̱͓̺̜̠͇͚͓̳̹̥̳̠͍̫͈̟͈̘̯̬̞͔̝͍͍̥̒̐͗͒͂͆̑̀̿̏́̀͑͗̐́̀̾̓́̌̇̒̈́̌̓͐̃̈́̒̂̀̾͂̊̀̂͐̃̄̓̔̽̒̈́̇̓͌̇̂̆̒̏̊̋͊͛͌̊̇̒̅͌̄̎̔̈́͊́̽̋̈̇̈́́͊̅͂̎̃͌͊͛͂̄̽̈́̿͐̉̽̿́́̉͆̈́̒́̂̾̄̇̌̒̈̅̍̿̐͑̓͊̈́̈̋̈́̉̍̋̊̈̀̈́̾̿̌̀̈́͌̑̍́̋̒̀̂̈́́̾̏̐̅̈̑͗͐̈͂̄̾̄̈́̍̉͑͛͗͋̈́̃̄̊́́͐̀̀̽̇̓̄̓̃͋͋̂̽̔̀̎͌̈́̈́̑̓̔̀̓͐͛͆̿̋͑͛̈́͂̅̋̅͆͗̇́̀̒́̏͒̐̍͂̓͐͐̇̂̉̑̊͑̉̋̍͊̄̀͂̎͒̔͊̃̏̕̚̕̕͘͘͘̚͘̚͘̕͘̚͘̚̚̚̕͘͜͜͜͝͝͠͠͝͝͠͠͝͝͝͝͝͝͝͝͝ͅͅͅc̴̨̡̢̢̢̡̡̢̛̛̛̻͇̝̣͉͚͎͕̻̦͖̤̖͇̪̩̤̻̭̮̙̰̖̰̳̪̱̹̳̬͖̣͙̼̙̰̻̘͇͚̺̗̩̫̞̳̼̤͔͍͉̟͕̯̺͈̤̰̹̍̋́͆̾̆̊͆͋̀͑͒̄̿̄̀̂͋̊͆́͑̑̽͊̓́̔̽̌͊̄͑͒͐̑͗̿̃̀̓̅́̿͗̈́͌̋̀̏̂͌̓́̇̀͒͋̌̌̅͋͌̆͐̀̔̒͐̊̇̿̽̀̈́̃̒̋̀̈́̃̏̂̊͗̑̊̈̇̀̌͐̈́̉̂̏͊̄͐̈̽͒̏̒̓́̌̓̅́̓̃͐͊͒̄͑̒͌̍̈́̕͘̚͘̕͘̚̕͜͝͠͝͝͝ͅǩ̴̢̢̢̧̨̢̢̢̨̨̨̢̢̢̨̧̨̡̡̢̛̛̛̛̛̛̛̜̥̩̙͕̮̪̻͈̘̯̼̰̜͚̰͖̬̳͖̣̭̼͔̲͉̭̺͚̺̟͉̝̱̲͎͉̙̥̤͚͙̬̪̜̺͙͍̱̞̭̬̩̖̤̹̤̺̦͈̰̗̰͍͇̱̤̬̬͙̙̲̙̜͖͓̙̟̙̯̪͍̺̥͔͕̝̳̹̻͇̠̣͈̰̦͓͕̩͇͈͇̖͙͍̰̲̤̞͎̟̝̝͈͖͔͖̦̮̗̬̞̞̜̬̠̹̣̣̲̮̞̤̜̤̲̙͔͕̯͔͍̤͕̣͔͙̪̫̝̣̰̬̬̭̞͔̦̟̥̣̻͉͈̮̥̦̮̦͕̤͇̺͆͆̈͗̄̀̌̔̈́̈̉̾̊̐̆̂͛̀̋́̏̀̿͒̓̈́̈́͂̽̾͗͊̋̐̓̓̀̃̊̊͑̓̈̎̇͑̆̂̉̾̾̑͊̉̃́̑͌̀̌̐̅̃̿̆̎̈́̀̒́͛̓̀̊́̋͛͒͊̆̀̃̊͋̋̾̇̒̋͂̏͗͆̂̔́̐̀́͗̅̈̋̂̎̒͊̌̉̈̈́͌̈́̔̾̊̎́͐͒̋̽̽́̾̿̚̕͘͘̚̕̕̕̚̚̕̚̕͘͜͜͜͝͠͝͝͝͝͝͝͝͝ͅͅͅͅͅͅB̸̢̧̨̡̢̧̨̡̡̨̡̨̡̡̡̢̨̢̨̛̛̛̛̛̛͉̞͚̰̭̲͈͎͕͈̦͍͈̮̪̤̻̻͉̫̱͔̞̫̦̰͈̗̯̜̩̪̲̻̖̳͖̦͎͔̮̺̬̬̼̦̠̪̤͙͍͓̜̥̙̖̫̻̜͍̻̙̖̜̹͔̗̪̜̖̼̞̣̠̫͉̯̮̤͈͎̝̪͎͇͙̦̥͙̳̫̰̪̣̱̘̤̭̱͍̦͔̖͎̺̝̰̦̱̣͙̙̤͚̲͔̘̱̜̻͔̥̻͖̭͔̜͉̺͕͙͖̜͉͕̤͚̠̩̮̟͚̗͈͙̟̞̮̬̺̻̞͔̥͉͍̦̤͓̦̻̦̯̟̰̭̝̘̩̖̝͔̳͉̗̖̱̩̩̟͙͙͛̀͐̈́̂̇͛̅̒̉̏̈́̿͐́̏̃̏̓̌̽͐̈́͛̍͗͆͛̋̔̉͂̔̂̓̌͌͋̂͆̉͑̊̎́̈́̈̂͆͑́̃̍̇̿̅̾́́̿̅̾̆̅̈́̈̓͒͌͛̃͆̋͂̏̓̅̀͂̽̂̈̈́̎̾̐͋͑̅̍̈́̑̅̄͆̓̾̈́͐̎̊͐̌̌̓͊̊̔̈́̃͗̓͊͐̌͆̓͗̓̓̾̂̽͊͗́́́̽͊͆͋͊̀̑̿̔͒̏̈́́̏͆̈́͋̒͗͂̄̇̒͐̃͑̅̍͒̎̈́̌̋́̓͂̀̇͛̋͊͆̈́̋́̍̃͒̆̕̚̚̕̕̕͘̕̚̚͘̕͜͜͜͜͝͠͠͝͠͝͝͝͝͠͝͝͝͝ͅͅͅͅͅI̵̡̢̧̨̡̢̨̡̡̢̡̧̡̢̢̢̡̢̛̛͕͎͕̩̠̹̩̺̣̳̱͈̻̮̺̟̘̩̻̫͖̟͓̩̜̙͓͇̙̱̭̰̻̫̥̗̠͍͍͚̞̘̫͉̬̫̖̖̦͖͉̖̩̩̖̤̺̥̻̝͈͎̻͓̟̹͍̲͚͙̹̟̟̯͚̳̟͕̮̻̟͈͇̩̝̼̭̯͚͕̬͇̲̲̯̰̖̙̣̝͇̠̞̙͖͎̮̬̳̥̣̺̰͔̳̳̝̩̤̦̳̞̰̩̫̟͚̱̪̘͕̫̼͉̹̹̟̮̱̤̜͚̝̠̤̖̮̯̳͖̗̹̞̜̹̭̿̏͋̒͆̔̄̃̾̓͛̾̌́̅̂͆̔͌͆͋̔̾́̈̇̐̄̑̓̂̾́̄̿̓̅̆͌̉̎̏̄͛̉͆̓̎͒͘̕̕͜͜͜͜͜͜͜͝͠ͅͅƠ̷̢̛̛̛̛̛̛̛̛̟̰͔͔͇̲̰̮̘̭̭̖̥̟̘̠̬̺̪͇̲͋͂̅̈́̍͂̽͗̾͒̇̇̒͐̍̽͊́̑̇̑̾̉̓̈̾͒̍̌̅̒̾̈́̆͌̌̾̎̽̐̅̏́̈̔͛̀̋̃͊̒̓͗͒̑͒̃͂̌̄̇̑̇͛̆̾͛̒̇̍̒̓̀̈́̄̐͂̍͊͗̎̔͌͛̂̏̉̊̎͗͊͒̂̈̽̊́̔̊̃͑̈́̑̌̋̓̅̔́́͒̄̈́̈̂͐̈̅̈̓͌̓͊́̆͌̉͐̊̉͛̓̏̓̅̈́͂̉̒̇̉̆̀̍̄̇͆͛̏̉̑̃̓͂́͋̃̆̒͋̓͊̄́̓̕̕̕̚͘͘͘̚̕̚͘̕̕͜͜͝͝͝͠͝͝͝͝͠ͅS̷̢̨̧̢̡̨̢̨̢̨̧̧̨̧͚̱̪͇̱̮̪̮̦̝͖̜͙̘̪̘̟̱͇͎̻̪͚̩͍̠̹̮͚̦̝̤͖̙͔͚̙̺̩̥̻͈̺̦͕͈̹̳̖͓̜͚̜̭͉͇͖̟͔͕̹̯̬͍̱̫̮͓̙͇̗̙̼͚̪͇̦̗̜̼̠͈̩̠͉͉̘̱̯̪̟͕̘͖̝͇̼͕̳̻̜͖̜͇̣̠̹̬̗̝͓̖͚̺̫͛̉̅̐̕͘͜͜͜͜ͅͅͅ.̶̨̢̢̨̢̨̢̛̻͙̜̼̮̝̙̣̘̗̪̜̬̳̫̙̮̣̹̥̲̥͇͈̮̟͉̰̮̪̲̗̳̰̫̙͍̦̘̠̗̥̮̹̤̼̼̩͕͉͕͇͙̯̫̩̦̟̦̹͈͔̱̝͈̤͓̻̟̮̱͖̟̹̝͉̰͊̓̏̇͂̅̀̌͑̿͆̿̿͗̽̌̈́̉̂̀̒̊̿͆̃̄͑͆̃̇͒̀͐̍̅̃̍̈́̃̕͘͜͜͝͠͠z̴̢̢̡̧̢̢̧̢̨̡̨̛̛̛̛̛̛̛̛̲͚̠̜̮̠̜̞̤̺͈̘͍̻̫͖̣̥̗̙̳͓͙̫̫͖͍͇̬̲̳̭̘̮̤̬̖̼͎̬̯̼̮͔̭̠͎͓̼̖̟͈͓̦̩̦̳̙̮̗̮̩͙͓̮̰̜͎̺̞̝̪͎̯̜͈͇̪̙͎̩͖̭̟͎̲̩͔͓͈͌́̿͐̍̓͗͑̒̈́̎͂̋͂̀͂̑͂͊͆̍͛̄̃͌͗̌́̈̊́́̅͗̉͛͌͋̂̋̇̅̔̇͊͑͆̐̇͊͋̄̈́͆̍̋̏͑̓̈́̏̀͒̂̔̄̅̇̌̀̈́̿̽̋͐̾̆͆͆̈̌̿̈́̎͌̊̓̒͐̾̇̈́̍͛̅͌̽́̏͆̉́̉̓̅́͂͛̄̆͌̈́̇͐̒̿̾͌͊͗̀͑̃̊̓̈̈́̊͒̒̏̿́͑̄̑͋̀̽̀̔̀̎̄͑̌̔́̉̐͛̓̐̅́̒̎̈͆̀̍̾̀͂̄̈́̈́̈́̑̏̈́̐̽̐́̏̂̐̔̓̉̈́͂̕̚̕͘͘̚͘̚̕̚̚̚͘̕̕̕͜͜͝͠͠͝͝͝͝͠͝͝͝͠͝͝͝͝͝͝ͅͅͅī̸̧̧̧̡̨̨̢̨̛̛̘͓̼̰̰̮̗̰͚̙̥̣͍̦̺͈̣̻͇̱͔̰͈͓͖͈̻̲̫̪̲͈̜̲̬̖̻̰̦̰͙̤̘̝̦̟͈̭̱̮̠͍̖̲͉̫͔͖͔͈̻̖̝͎̖͕͔̣͈̤̗̱̀̅̃̈́͌̿̏͋̊̇̂̀̀̒̉̄̈́͋͌̽́̈́̓̑̈̀̍͗͜͜͠͠ͅp̴̢̢̧̨̡̡̨̢̨̢̢̢̨̡̛̛͕̩͕̟̫̝͈̖̟̣̲̖̭̙͇̟̗͖͎̹͇̘̰̗̝̹̤̺͉͎̙̝̟͙͚̦͚͖̜̫̰͖̼̤̥̤̹̖͉͚̺̥̮̮̫͖͍̼̰̭̤̲͔̩̯̣͖̻͇̞̳̬͉̣̖̥̣͓̤͔̪̙͎̰̬͚̣̭̞̬͎̼͉͓̮͙͕̗̦̞̥̮̘̻͎̭̼͚͎͈͇̥̗͖̫̮̤̦͙̭͎̝͖̣̰̱̩͎̩͎̘͇̟̠̱̬͈̗͍̦̘̱̰̤̱̘̫̫̮̥͕͉̥̜̯͖̖͍̮̼̲͓̤̮͈̤͓̭̝̟̲̲̳̟̠͉̙̻͕͙̞͔̖͈̱̞͓͔̬̮͎̙̭͎̩̟̖͚̆͐̅͆̿͐̄̓̀̇̂̊̃̂̄̊̀͐̍̌̅͌̆͊̆̓́̄́̃̆͗͊́̓̀͑͐̐̇͐̍́̓̈́̓̑̈̈́̽͂́̑͒͐͋̊͊̇̇̆̑̃̈́̎͛̎̓͊͛̐̾́̀͌̐̈́͛̃̂̈̿̽̇̋̍͒̍͗̈͘̚̚͘̚͘͘͜͜͜͜͜͜͠͠͝͝ͅͅͅ☻♥■∞{╚mYÄÜXτ╕○\╚Θº£¥ΘBM@Q05♠{{↨↨▬§¶‼↕◄►☼1♦  wumbo╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ

Link to comment
Share on other sites

Link to post
Share on other sites

1 hour ago, huilun02 said:

Which it wont

Graphene or this method? Graphene is already in the market. 

CPU: Ryzen 9 5900 Cooler: EVGA CLC280 Motherboard: Gigabyte B550i Pro AX RAM: Kingston Hyper X 32GB 3200mhz

Storage: WD 750 SE 500GB, WD 730 SE 1TB GPU: EVGA RTX 3070 Ti PSU: Corsair SF750 Case: Streacom DA2

Monitor: LG 27GL83B Mouse: Razer Basilisk V2 Keyboard: G.Skill KM780 Cherry MX Red Speakers: Mackie CR5BT

 

MiniPC - Sold for $100 Profit

Spoiler

CPU: Intel i3 4160 Cooler: Integrated Motherboard: Integrated

RAM: G.Skill RipJaws 16GB DDR3 Storage: Transcend MSA370 128GB GPU: Intel 4400 Graphics

PSU: Integrated Case: Shuttle XPC Slim

Monitor: LG 29WK500 Mouse: G.Skill MX780 Keyboard: G.Skill KM780 Cherry MX Red

 

Budget Rig 1 - Sold For $750 Profit

Spoiler

CPU: Intel i5 7600k Cooler: CryOrig H7 Motherboard: MSI Z270 M5

RAM: Crucial LPX 16GB DDR4 Storage: Intel S3510 800GB GPU: Nvidia GTX 980

PSU: Corsair CX650M Case: EVGA DG73

Monitor: LG 29WK500 Mouse: G.Skill MX780 Keyboard: G.Skill KM780 Cherry MX Red

 

OG Gaming Rig - Gone

Spoiler

 

CPU: Intel i5 4690k Cooler: Corsair H100i V2 Motherboard: MSI Z97i AC ITX

RAM: Crucial Ballistix 16GB DDR3 Storage: Kingston Fury 240GB GPU: Asus Strix GTX 970

PSU: Thermaltake TR2 Case: Phanteks Enthoo Evolv ITX

Monitor: Dell P2214H x2 Mouse: Logitech MX Master Keyboard: G.Skill KM780 Cherry MX Red

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

1 hour ago, huilun02 said:

This method

And this is exactly why. Thanks

This method as in the OP or the later comment? Why would anyone in the market pass up the ability to produce graphene for pennies on the dollar compared to old tech?

Link to comment
Share on other sites

Link to post
Share on other sites

Neat. Wonder material. I look forward to see how electronics like chips amd batteries will shift with new materials eventually. 

 

| Ryzen 7 7800X3D | AM5 B650 Aorus Elite AX | G.Skill Trident Z5 Neo RGB DDR5 32GB 6000MHz C30 | Sapphire PULSE Radeon RX 7900 XTX | Samsung 990 PRO 1TB with heatsink | Arctic Liquid Freezer II 360 | Seasonic Focus GX-850 | Lian Li Lanccool III | Mousepad: Skypad 3.0 XL / Zowie GTF-X | Mouse: Zowie S1-C | Keyboard: Ducky One 3 TKL (Cherry MX-Speed-Silver)Beyerdynamic MMX 300 (2nd Gen) | Acer XV272U | OS: Windows 11 |

Link to comment
Share on other sites

Link to post
Share on other sites

9 hours ago, HalGameGuru said:

This method as in the OP or the later comment? Why would anyone in the market pass up the ability to produce graphene for pennies on the dollar compared to old tech?


The key claim here is scalability.  It’s one that hasn’t been proven yet but it’s very tempting.  There’s also a gas pollution aspect I’m curious about.  Apparently non carbon stuff is gasified. Scalability is big though.

 

This was actually the big change with carbon fiber.  It had been around as a material for a long time.  The problem with the stuff was it was unbelievably expensive to produce.  The change was there was a production breakthrough involving scaling.  The technique of production didn’t change much, but the methodology did.  This also happened with antibiotics.  The first patient to receive antibiotics had like 20 people frantically attempting to produce enough to the drug using lab equipment and they failed because they couldn’t make enough of the stuff.  So Bayer stepped in with its industrial drug producing techniques and things got cheap fast. 

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

55 minutes ago, Bombastinator said:


The key claim here is scalability.  It’s one that hasn’t been proven yet but it’s very tempting.  There’s also a gas pollution aspect I’m curious about.  Apparently non carbon stuff is gasified. Scalability is big though.

 

The key to scalability here is the actual process, the "flash". Even if scalability requires parallel processing rather than larger chambers it could be easily automated and scaled up. I actually had an idea for an automated coal conversion process. You grind coal into coal dust, feed it into tablet presses, feed the tablets into a hopper, tablets go into a revolver style cylinder, the cylinder rotates between the feeder and the electrodes, flash, as the cylinder keeps turning the graphene and gasses are forced out of the chamber with compressed air, cylinder keeps turning to accept another tablet. You could have a dozen chambers in this cylinder to allow time for the heat and gasses to dissipate. it doesn't take long.

 

The interesting thing is that depending on what you are flashing most of the gasses given off are going to be pretty simple, things like water vapor and hydrogen. They talk about capturing the gasses as some raw materials produce a lot of pure nitrogen or oxygen.

Link to comment
Share on other sites

Link to post
Share on other sites

19 hours ago, HalGameGuru said:

The process is something you could do in your back yard. It will spread

You can reach 3000 Kelvin in your backyard? 

"And I'll be damned if I let myself trip from a lesser man's ledge"

Link to comment
Share on other sites

Link to post
Share on other sites

26 minutes ago, Velcade said:

You can reach 3000 Kelvin in your backyard? 

as it happens, yes.
 

3000k is approx. 5000f. 3000k is ~2300some Celsius.  A garden variety oxy acetylene torch can do 3000c. I got an oxy acetylene torch.

 

a torch of this type will spontaneously produce buckyballs and buckytubes when used.  The problem has always been not the production but the collection and useful amounts.  If we think of graphene as more-or-less buckysheet, it is reasonable that it would be producible.  Useful sizes and useful amounts though, THAT could be a thing.

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

11 minutes ago, Bombastinator said:

as it happens, yes.
 

3000k is approx. 5000f. 3000k is ~2300some Celsius.  A garden variety oxy acetylene torch can do 3000c. I got an oxy acetylene torch.

Right, a torch.  I'm slow this morning...

"And I'll be damned if I let myself trip from a lesser man's ledge"

Link to comment
Share on other sites

Link to post
Share on other sites

5 minutes ago, Velcade said:

Right, a torch.  I'm slow this morning...

One could probably also do it with a solar oven, so mirrors and firebrick.  I think you may still be right, but it’s likely not the heat that is likely to be the stopper.

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

I suspect neither of those methods would be upto the task honestly, not on temperature grounds but because the method described has very low contaminant potential, as well as being able to very suddenly heat the material, (which seems to be key), Still it's probably only mostly out of reach of working in your backyard as it seems the high electrical currents and energy discharge rate would be the real issue. Those are't impossible to solve, but they're definitely tricky from a safety standpoint for the backyard. By industrial standards though they're not hard.

 

The real scalability questions here boil down to how many flashing's you can do before you have to extract the product and how  time consuming extraction is. The more time consuming extraction is and the fewer flashings you can do between extractions in one container is going to put a hard upper limit on effective scalability. need too many flash chambers to account for downtime for each chamber to have it's results extracted and the upfront setup costs ill kill the cost efficiency. OTOH this sort of process isn't radically different in principle to some existing smelting processes, so i'm hopeful practical cost efficient answers can be found to all of that if the method itself doesn't allready have them backed in. The real hard part may be getting someone to pony up the starting funding on the process of developing this into a commercial scale process.

Link to comment
Share on other sites

Link to post
Share on other sites

1 minute ago, CarlBar said:

I suspect neither of those methods would be upto the task honestly, not on temperature grounds but because the method described has very low contaminant potential, as well as being able to very suddenly heat the material, (which seems to be key), Still it's probably only mostly out of reach of working in your backyard as it seems the high electrical currents and energy discharge rate would be the real issue. Those are't impossible to solve, but they're definitely tricky from a safety standpoint for the backyard. By industrial standards though they're not hard.

 

The real scalability questions here boil down to how many flashing's you can do before you have to extract the product and how  time consuming extraction is. The more time consuming extraction is and the fewer flashings you can do between extractions in one container is going to put a hard upper limit on effective scalability. need too many flash chambers to account for downtime for each chamber to have it's results extracted and the upfront setup costs ill kill the cost efficiency. OTOH this sort of process isn't radically different in principle to some existing smelting processes, so i'm hopeful practical cost efficient answers can be found to all of that if the method itself doesn't allready have them backed in. The real hard part may be getting someone to pony up the starting funding on the process of developing this into a commercial scale process.

That was the problem with carbon fiber too iirc. Took years to find the funding and build a factory big enough to make it efficient.

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

3 minutes ago, Bombastinator said:

That was the problem with carbon fiber too iirc. Took years to find the funding and build a factory big enough to make it efficient.

 

Even penicillin is an example of this in a roundabout way, a lot of people looking at how fast it went to full scale production from the early trials forget the role WW2 and the funding that got assigned to it by the allies as a result of that played in developing a mass manufacturing process for it on the timescale that actually occurred.

 

Ibn fact without WW2 i'm not completely convinced we'd have mass produced antibiotics by now.

Link to comment
Share on other sites

Link to post
Share on other sites

6 minutes ago, CarlBar said:

 

Even penicillin is an example of this in a roundabout way, a lot of people looking at how fast it went to full scale production from the early trials forget the role WW2 and the funding that got assigned to it by the allies as a result of that played in developing a mass manufacturing process for it on the timescale that actually occurred.

 

Ibn fact without WW2 i'm not completely convinced we'd have mass produced antibiotics by now.

It applies to most “modern wonders” I think.  Lithium batteries require factory sized machines to produce them.  The requirements for making modern CPUs are crazy.  Some modern wonders continue to be a bit unpleasant.  The methodology behind LCD is a multi hundred year old process involving wiping a piece of glass with a strip of velvet.  

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

19 hours ago, Taf the Ghost said:

Well, the tier list is still topped by Fusion Power. It's the "just 20 years ago" for the last 60 years.

hopefully we have molten salt reactors, jumping into the scene, with one already being worked on for one of the countries near india, i forgot which one though.

22 hours ago, gabrielcarvfer said:

For heat and clock, sure. Die size reduction, maybe. For transistor size, probably not.

the silicon itself is becoming the issue, and we are on 7nm only, its going to get much worse from here, maybe they will try to reduce the height of the die to increase conductivity, it be cool if we could use diamond as a silicon substitute, higher clocks, and extremely good heat conductivity, though they are having trouble doping it

edit: molten salt reactors

Link to comment
Share on other sites

Link to post
Share on other sites

4 minutes ago, cj09beira said:

hopefully we have molten salt, jumping into the scene, with one already being worked on for one of the countries near india, i forgot which one though.

the silicon itself is becoming the issue, and we are on 7nm only, its going to get much worse from here, maybe they will try to reduce the height of the die to increase conductivity, it be cool if we could use diamond as a silicon substitute, higher clocks, and extremely good heat conductivity, though they are having trouble doping it

My memory is molten salt isn’t a power generation technology it’s a power storage technology.  Basically a heat battery.  Not unlike a water gravity battery or other similar things.  Water gravity batteries have been around for a while. Find or create a mountaintop lake, and use electricity to pump water into it when there’s too much electrical power, then when there isn’t enough, pull the plug and generate electricity from the water flowing down.

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

1 hour ago, Bombastinator said:

My memory is molten salt isn’t a power generation technology it’s a power storage technology.  Basically a heat battery.  Not unlike a water gravity battery or other similar things.  Water gravity batteries have been around for a while. Find or create a mountaintop lake, and use electricity to pump water into it when there’s too much electrical power, then when there isn’t enough, pull the plug and generate electricity from the water flowing down.

ups i forgot the important part, i meant molten salt reactors, super cool tech, allows for a self regulating reactor that is nearly impossible to enter "melt down", allows for much lower steam pressures (means its much safer), easier medical isotope production, because the fuel is dissolved in the molten salt fuel is consumed totally without the problems that rods have, also can work with the old nuclear waste which is a great plus, was invented in the 60s but sadly no one looked at it until the early 2010s

Link to comment
Share on other sites

Link to post
Share on other sites

7 minutes ago, cj09beira said:

ups i forgot the important part, i meant molten salt reactors, super cool tech, allows for a self regulating reactor that is nearly impossible to enter "melt down", allows for much lower steam pressures (means its much safer), easier medical isotope production, because the fuel is dissolved in the molten salt fuel is consumed totally without the problems that rods have, also can work with the old nuclear waste which is a great plus, was invented in the 60s but sadly no one looked at it until the early 2010s

Ah. Molten salt cooled nuclear reactor.   Different thing.  My understanding is there are a bunch of “3rd gen nuclear” systems being looked at.

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

5 hours ago, HalGameGuru said:

The key to scalability here is the actual process, the "flash". Even if scalability requires parallel processing rather than larger chambers it could be easily automated and scaled up. I actually had an idea for an automated coal conversion process. You grind coal into coal dust, feed it into tablet presses, feed the tablets into a hopper, tablets go into a revolver style cylinder, the cylinder rotates between the feeder and the electrodes, flash, as the cylinder keeps turning the graphene and gasses are forced out of the chamber with compressed air, cylinder keeps turning to accept another tablet. You could have a dozen chambers in this cylinder to allow time for the heat and gasses to dissipate. it doesn't take long.

 

The interesting thing is that depending on what you are flashing most of the gasses given off are going to be pretty simple, things like water vapor and hydrogen. They talk about capturing the gasses as some raw materials produce a lot of pure nitrogen or oxygen.

With coal there would be sulpher.  Not sure what that would turn into.  Also the piece of graphene wouldn’t be larger than the “tablet”, so not rolls of the stuff.  The holy grail here is going to be some continuous feed process.  It’s what made moder plate glass cheap.  Optical fiber gets away with a not quite but extremely long process.  Iirc they can make a couple linear miles of the stuff befor they have to reload everything.

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

Can't wait for graphene-based batteries to be implemented in our phones :D

ʕ•ᴥ•ʔ

MacBook Pro 13" (2018) | ThinkPad x230 | iPad Air 2     

~(˘▾˘~)   (~˘▾˘)~

Link to comment
Share on other sites

Link to post
Share on other sites

4 minutes ago, Soppro said:

Can't wait for graphene-based batteries to be implemented in our phones :D

“Based” “enhanced” “infused”.  How about “somehow magically gifted”? 

Not a pro, not even very good.  I’m just old and have time currently.  Assuming I know a lot about computers can be a mistake.

 

Life is like a bowl of chocolates: there are all these little crinkly paper cups everywhere.

Link to comment
Share on other sites

Link to post
Share on other sites

1 hour ago, Bombastinator said:

With coal there would be sulpher.  Not sure what that would turn into.  Also the piece of graphene wouldn’t be larger than the “tablet”, so not rolls of the stuff.  The holy grail here is going to be some continuous feed process.  It’s what made moder plate glass cheap.  Optical fiber gets away with a not quite but extremely long process.  Iirc they can make a couple linear miles of the stuff befor they have to reload everything.

Nobody is making massive sheets, and the other processes require harsh solvents and furnaces. And the point here is having graphene available at a fraction of the price for all the uses of it, from concrete to meta-materials

Link to comment
Share on other sites

Link to post
Share on other sites

2 hours ago, cj09beira said:

ups i forgot the important part, i meant molten salt reactors, super cool tech, allows for a self regulating reactor that is nearly impossible to enter "melt down", allows for much lower steam pressures (means its much safer), easier medical isotope production, because the fuel is dissolved in the molten salt fuel is consumed totally without the problems that rods have, also can work with the old nuclear waste which is a great plus, was invented in the 60s but sadly no one looked at it until the early 2010s

 

1 hour ago, Bombastinator said:

Ah. Molten salt cooled nuclear reactor.   Different thing.  My understanding is there are a bunch of “3rd gen nuclear” systems being looked at.

Toshiba has deployed a few molten salt reactors already. It's cool tech. Uranium, just because there's so dang much of it, will always be king in the Fission Reactor game, but the problem there is political issues stemming from the 1960s. Those are pretty much the reason for most of even the modern problems with reactors. There's been reactor designs that can't melt down for a couple of decades already. 

Link to comment
Share on other sites

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×