Jump to content

liquid metal cooled PC?

Was just wondering about this, if water is 10x better to move heat than air, then what about liquid metal, like gallium, mercury or that metal CPU paste, if you put any of these in a liquid CPU cooler how good would it work?

 

Just thought of this...

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

You would need one hell of a pump in order to do this.

It would also have to be a full copper system, and glass tubing, since gallium and mercury both destroy aluminum and can leech through soft plastics.

 

How would it work? Pretty god damn phenomenally i'd imagine. You would need a ridiculous pump and for anything larger than your average 120mm AIO you would probably need to reinforce your mounts since everything would be super heavy, but it would have amazing thermal performance.

 

Link to comment
Share on other sites

Link to post
Share on other sites

It is much cheaper to do phase change cooling

ƆԀ S₱▓Ɇ▓cs: i7 6ʇɥפᴉƎ00K (4.4ghz), Asus DeLuxe X99A II, GT҉X҉1҉0҉8҉0 Zotac Amp ExTrꍟꎭe),Si6F4Gb D???????r PlatinUm, EVGA G2 Sǝʌǝᘉ5ᙣᙍᖇᓎᙎᗅᖶt, Phanteks Enthoo Primo, 3TB WD Black, 500gb 850 Evo, H100iGeeTeeX, Windows 10, K70 R̸̢̡̭͍͕̱̭̟̩̀̀̃́̃͒̈́̈́͑̑́̆͘͜ͅG̶̦̬͊́B̸͈̝̖͗̈́, G502, HyperX Cloud 2s, Asus MX34. פN∩SW∀S 960 EVO

Just keeping this here as a backup 9̵̨̢̨̧̧̡̧̡̧̡̧̡̡̢̢̡̢̧̡̢̡̡̢̧̛̛̛̛̛̛̱̖͈̠̝̯̹͉̝̞̩̠̹̺̰̺̲̳͈̞̻̜̫̹̱̗̣͙̻̘͎̲̝͙͍͔̯̲̟̞͚̖̘͉̭̰̣͎͕̼̼̜̼͕͎̣͇͓͓͎̼̺̯͈̤̝͖̩̭͍̣̱̞̬̺̯̼̤̲͎̖̠̟͍̘̭͔̟̗̙̗̗̤̦͍̫̬͔̦̳̗̳͔̞̼̝͍̝͈̻͇̭̠͈̳͍̫̮̥̭͍͔͈̠̹̼̬̰͈̤͚̖̯͍͉͖̥̹̺͕̲̥̤̺̹̹̪̺̺̭͕͓̟̳̹͍̖͎̣̫͓͍͈͕̳̹̙̰͉͙̝̜̠̥̝̲̮̬͕̰̹̳͕̰̲̣̯̫̮͙̹̮͙̮̝̣͇̺̺͇̺̺͈̳̜̣̙̻̣̜̻̦͚̹̩͓͚̖͍̥̟͍͎̦͙̫̜͔̭̥͈̬̝̺̩͙͙͉̻̰̬̗̣͖̦͎̥̜̬̹͓͈͙̤̜̗͔̩̖̳̫̑̀̂̽̈́̈́̿͒̿̋̊͌̾̄̄̒̌͐̽̿̊͑̑̆͗̈̎̄͒̑̋͛̑͑̂͑̀͐̀͑̓͊̇͆̿͑͛͛͆́͆̓̿̇̀̓͑͆͂̓̾̏͊̀̇̍̃́̒̎̀̒̄̓̒̐̑̊̏̌̽̓͂͋̓̐̓͊̌͋̀̐̇̌̓̔͊̈̇́̏͒̋͊̓̆̋̈̀̌̔͆͑̈̐̈̍̀̉̋̈́͊̽͂̿͌͊̆̾̉͐̿̓̄̾͑̈́͗͗̂̂́̇͂̀̈́́̽̈́̓̓͂̽̓̀̄͌̐̔̄̄͒͌̈́̅̉͊̂͒̀̈́̌͂̽̀̑̏̽̀͑̐̐͋̀̀͋̓̅͋͗̍́͗̈́̆̏̇͊̌̏̔̑̐̈́͑̎͑͆̏̎́̑̍̏̒̌̊͘͘̚̕̚̕̕̚̕̚̕̕͜͜͜͜͜͝͝͠͠͝͝͝͝͝͝͝͠͝͝ͅͅͅͅͅͅͅ8̵̨̛̛̛̛̮͍͕̥͉̦̥̱̞̜̫̘̤̖̬͍͇͓̜̻̪̤̣̣̹̑͑̏̈́̐̐́̎͒̔͒̌̑̓̆̓͑̉̈́́͋̌͋͐͛͋̃̍̽̊͗͋͊̂̅͊͑́͋͛̉̏̓͌̾̈́̀͛͊̾͑̌̀̀̌̓̏̑́̄̉̌͂́͛̋͊̄͐͊̈́̀̌̆̎̿̓̔̍̎̀̍̚̕̕͘͘͘̕̚͝͝͠͠͠0̶̡̡̡̢̨̨͕̠̠͉̺̻̯̱̘͇̥͎͖̯͕̖̬̭͔̪̪͎̺̠̤̬̬̤̣̭̣͍̥̱̘̳̣̤͚̭̥͚̦͙̱̦͕̼͖͙͕͇̭͓͉͎̹̣̣͕̜͍͖̳̭͕̼̳̖̩͍͔̱̙̠̝̺̰̦̱̿̄̀͐͜͜ͅͅt̶̡̨̡̨̧̢̧̢̨̧̧̧̧̢̡̨̨̢̨̢̧̢̛̛̛̛̛̠͍̞̮͇̪͉̩̗̗͖̫͉͎͓̮̣̘̫͔̘̬̮̙̯̣͕͓̲̣͓͓̣̹̟͈̱͚̘̼̙̖̖̼̙̜̝͙̣̠̪̲̞̖̠̯̖̠̜̱͉̲̺͙̤̻̦̜͎̙̳̺̭̪̱͓̦̹̺͙̫̖̖̰̣͈͍̜̺̘͕̬̥͇̗̖̺̣̲̫̟̣̜̭̟̱̳̳̖͖͇̹̯̜̹͙̻̥̙͉͕̜͎͕̦͕̱͖͉̜̹̱̦͔͎̲̦͔̖̘̫̻̹̮̗̮̜̰͇̰͔̱͙̞̠͍͉͕̳͍̰̠̗̠̯̜̩͓̭̺̦̲̲͖̯̩̲̣̠͉̦̬͓̠̜̲͍̘͇̳̳͔̼̣͚̙͙͚͕̙̘̣̠͍̟̪̝̲͇͚̦̖͕̰̟̪͖̳̲͉͙̰̭̼̩̟̝̣̝̬̳͎̙̱͒̃̈͊̔͒͗̐̄̌͐͆̍͂̃̈́̾͗̅̐͒̓̆͛̂̾͋̍͂̂̄̇̿̈͌̅̈́̃̾̔̇̇̾̀͊͋̋̌̄͌͆͆̎̓̈́̾̊͊̇̌̔̈́̈́̀̐͊̊̍͑̊̈̓͑̀́̅̀̑̈́̽̃̽͛̇́̐̓̀͆̔̈̀̍̏̆̓̆͒̋́̋̍́̂̉͛̓̓̂̋̎́̒̏̈͋̃̽͆̓̀̔͑̈́̓͌͑̅̽́̐̍̉̑̓̈́͌̋̈́͂̊́͆͂̇̈́̔̃͌̅̈́͌͛̑̐̓̔̈́̀͊͛̐̾͐̔̾̈̃̈̄͑̓̋̇̉̉̚̕̚͘̕̚̚̕̕͜͜͜͜͜͜͜͜͜͜͜͜͜͝͝͝͠͝͝͝͝͝͠ͅͅͅͅͅi̵̢̧̢̧̡̧̢̢̧̢̢̢̡̡̡̧̧̡̡̧̛̛͈̺̲̫͕̞͓̥̖̭̜̫͉̻̗̭̖͔̮̠͇̩̹̱͈̗̭͈̤̠̮͙͇̲͙̰̳̹̲͙̜̟͚͎͓̦̫͚̻̟̰̣̲̺̦̫͓̖̯̝̬͉̯͓͈̫̭̜̱̞̹̪͔̤̜͙͓̗̗̻̟͎͇̺̘̯̲̝̫͚̰̹̫̗̳̣͙̮̱̲͕̺̠͉̫̖̟͖̦͉̟͈̭̣̹̱̖̗̺̘̦̠̯̲͔̘̱̣͙̩̻̰̠͓͙̰̺̠̖̟̗̖͉̞̣̥̝̤̫̫̜͕̻͉̺͚̣̝̥͇̭͎̖̦̙̲͈̲̠̹̼͎͕̩͓̖̥̘̱̜͙̹̝͔̭̣̮̗̞̩̣̬̯̜̻̯̩̮̩̹̻̯̬̖͂̈͂̒̇͗͑̐̌̎̑̽̑̈̈́͑̽́̊͋̿͊͋̅̐̈́͑̇̿̈́̌͌̊̅͂̎͆̏̓͂̈̿̏̃͑̏̓͆̔̋̎̕͘͘͘͜͜͜͜͜͜͜͝͝͠͠ͅͅͅͅͅͅͅͅͅZ̴̧̢̨̢̧̢̢̡̧̢̢̢̨̨̨̡̨̧̢̧̛̛̬̖͈̮̝̭̖͖̗̹̣̼̼̘̘̫̠̭̞͙͔͙̜̠̗̪̠̼̫̻͓̳̟̲̳̻̙̼͇̺͎̘̹̼͔̺̹̬̯̤̮̟͈̭̻͚̣̲͔͙̥͕̣̻̰͈̼̱̺̤̤͉̙̦̩̗͎̞͓̭̞̗͉̳̭̭̺̹̹̮͕̘̪̞̱̥͈̹̳͇̟̹̱̙͚̯̮̳̤͍̪̞̦̳̦͍̲̥̳͇̪̬̰̠͙͕̖̝̫̩̯̱̘͓͎̪͈̤̜͎̱̹̹̱̲̻͎̖̳͚̭̪̦̗̬͍̯̘̣̩̬͖̝̹̣̗̭͖̜͕̼̼̲̭͕͔̩͓̞̝͓͍̗̙̯͔̯̞̝̳̜̜͉̖̩͇̩̘̪̥̱͓̭͎͖̱̙̩̜͎̙͉̟͎͔̝̥͕͍͓̹̮̦̫͚̠̯͓̱͖͔͓̤͉̠͙̋͐̀͌̈́͆̾͆̑̔͂͒̀̊̀͋͑̂͊̅͐̿́̈́̐̀̏̋̃̄͆͒̈́̿̎́́̈̀̀͌̔͋͊̊̉̿͗͊͑̔͐̇͆͛̂̐͊̉̄̈́̄̐͂͂͒͑͗̓͑̓̾̑͋̒͐͑̾͂̎̋̃̽̂̅̇̿̍̈́́̄̍͂͑̏̐̾̎̆̉̾͂̽̈̆̔́͋͗̓̑̕͘̕͘͜͜͜͜͜͝͝͝͝͠͠͝ͅo̶̪͆́̀͂̂́̄̅͂̿͛̈́̿͊͗́͘͝t̴̡̨̧̨̧̡̧̨̡̢̧̢̡̨̛̪͈̣̭̺̱̪̹̺̣̬̖̣̻͈̞̙͇̩̻̫͈̝̭̟͎̻̟̻̝̱͔̝̼͍̞̼̣̘̤̯͓͉̖̠̤͔̜̙͚͓̻͓̬͓̻̜̯̱̖̳̱̗̠̝̥̩͓̗̪̙͓̖̠͎̗͎̱̮̯̮͙̩̫̹̹̖͙̙͖̻͈̙̻͇͔̙̣̱͔̜̣̭̱͈͕̠̹͙̹͇̻̼͎͍̥̘͙̘̤̜͎̟͖̹̦̺̤͍̣̼̻̱̲͎̗̹͉͙̪̞̻̹͚̰̻͈͈͊̈́̽̀̎̃̊́̈́̏̃̍̉̇̑̂̇̏̀͊̑̓͛̽͋̈́͆́̊͊̍͌̈́̓͊̌̿̂̾̐͑̓̀́͒̃̋̓͆̇̀͊̆͗̂͑͐̀͗̅̆͘̕͘̕̕͜͜͝͝͝͝͝͝͝ͅͅͅͅͅͅͅͅͅḁ̶̢̡̨̧̡̡̨̨̧̨̡̡̢̧̨̡̡̛̛̛͍̱̳͚͕̩͍̺̪̻̫̙͈̬͙̖͙̬͍̬̟̣̝̲̼̜̼̺͎̥̮̝͙̪̘̙̻͖͇͚͙̣̬̖̲̲̥̯̦̗̰̙̗̪̞̗̩̻̪̤̣̜̳̩̦̻͓̞̙͍͙̫̩̹̥͚̻̦̗̰̲̙̫̬̱̺̞̟̻͓̞͚̦̘̝̤͎̤̜̜̥̗̱͈̣̻̰̮̼̙͚͚̠͚̲̤͔̰̭̙̳͍̭͎̙͚͍̟̺͎̝͓̹̰̟͈͈̖̺͙̩̯͔̙̭̟̞̟̼̮̦̜̳͕̞̼͈̜͍̮͕̜͚̝̦̞̥̜̥̗̠̦͇͖̳͈̜̮̣͚̲̟͙̎̈́́͊̔̑̽̅͐͐͆̀͐́̓̅̈͑͑̍̿̏́͆͌̋̌̃̒̽̀̋̀̃̏̌́͂̿̃̎̐͊̒̀̊̅͒̎͆̿̈́̑̐̒̀̈́̓̾͋͆̇̋͒̎̈̄̓̂͊̆͂̈́̒̎͐̇̍̆̋̅̿̔͒̄̇̂̋̈́͆̎̔̇͊̊̈́̔̏͋́̀͂̈́̊͋͂̍̾̓͛̇̔̚͘̚̕̚͘͘̕̕̕̚͘͘̚̕̚̕͜͜͜͝͝͝͝͝͝͝͝ͅͅͅͅͅç̵̧̢̨̢̢̢̧̧̡̨̡̢̧̧̧̨̡̡̨̨̢̢̢̧̨̢̨̢̛̛͉̗̠͇̹̖̝͕͚͎̟̻͓̳̰̻̺̞̣͚̤͙͍͇̗̼͖͔͕͙͖̺͙̖̹̘̘̺͓̜͍̣̰̗̖̺̗̪̘̯̘͚̲͚̲̬̞̹̹͕̭͔̳̘̝̬͉̗̪͉͕̞̫͔̭̭̜͉͔̬̫͙̖̙͚͔͙͚͍̲̘͚̪̗̞̣̞̲͎͔͖̺͍͎̝͎͍̣͍̩̟͈͕̗͉̪̯͉͎͖͍̖͎̖̯̲̘̦̟̭͍͚͓͈͙̬͖̘̱̝̜̘̹̩̝̥̜͎̬͓̬͙͍͇͚̟̫͇̬̲̥̘̞̘̟̘̝̫͈̙̻͇͎̣̪̪̠̲͓͉͙͚̭̪͇̯̠̯̠͖̞̜͓̲͎͇̼̱̦͍͉͈͕͉̗̟̖̗̱̭͚͎̘͓̬͍̱͍̖̯̜̗̹̰̲̩̪͍̞̜̫̩̠͔̻̫͍͇͕̰̰̘͚͈̠̻̮͊̐̿̏̐̀̇̑̐̈͛͑͑̍̑̔̃̈́̓̈́̇̐͑̐̊̆͂̀̏͛̊̔̍̽͗͋̊̍̓̈́̏̅͌̀̽́̑͒͒̓͗̈́̎͌͂̕̚͘͘͜͜͜͜͜͠͝͝͝͝ͅͅͅͅͅͅͅS̵̡̡̧̧̨̨̡̢̡̡̡̡̧̧̡̧̢̫̯͔̼̲͉͙̱̮̭̗͖̯̤͙̜͚̰̮̝͚̥̜̞̠̤̺̝͇̻̱͙̩̲̺͍̳̤̺̖̝̳̪̻̗̮̪̖̺̹̭͍͇̗̝̱̻̳̝̖̝͎̙͉̞̱̯̙̜͇̯̻̞̱̭̗͉̰̮̞͍̫̺͙͎̙̞̯̟͓͉̹̲͖͎̼̫̩̱͇̲͓̪͉̺̞̻͎̤̥̭̺̘̻̥͇̤̖̰̘̭̳̫̙̤̻͇̪̦̭̱͎̥̟͖͕̣̤̩̟̲̭̹̦̹̣͖̖͒̈́̈́̓͗̈̄͂̈́̅̐̐̿̎̂͗̎̿̕͘͜͜͜͜͝͝ͅͅt̸̡̡̧̧̨̡̢̛̥̥̭͍̗͈̩͕͔͔̞̟͍̭͇̙̺̤͚͎͈͎͕̱͈̦͍͔͓̬͚̗̰̦͓̭̰̭̎̀̂̈́̓̒̈́̈́̂̄̋́̇̂͐͒̋̋̉͐̉̏̇͋̓̈́͐̾͋̒͒͐̊̊̀̄͆̄͆̑͆̇̊̓̚̚̕̚̕͜͠͝͝ͅͅơ̵̡̨̡̡̡̨̛̺͕̼͔̼̪̳͖͓̠̘̘̳̼͚͙͙͚̰͚͚͖̥̦̥̘̖̜̰͔̠͕̦͎̞̮͚͕͍̤̠̦͍̥̝̰̖̳̫̮̪͇̤̱̜͙͔̯͙̙̼͇̹̥̜͈̲̺̝̻̮̬̼̫̞̗̣̪̱͓̺̜̠͇͚͓̳̹̥̳̠͍̫͈̟͈̘̯̬̞͔̝͍͍̥̒̐͗͒͂͆̑̀̿̏́̀͑͗̐́̀̾̓́̌̇̒̈́̌̓͐̃̈́̒̂̀̾͂̊̀̂͐̃̄̓̔̽̒̈́̇̓͌̇̂̆̒̏̊̋͊͛͌̊̇̒̅͌̄̎̔̈́͊́̽̋̈̇̈́́͊̅͂̎̃͌͊͛͂̄̽̈́̿͐̉̽̿́́̉͆̈́̒́̂̾̄̇̌̒̈̅̍̿̐͑̓͊̈́̈̋̈́̉̍̋̊̈̀̈́̾̿̌̀̈́͌̑̍́̋̒̀̂̈́́̾̏̐̅̈̑͗͐̈͂̄̾̄̈́̍̉͑͛͗͋̈́̃̄̊́́͐̀̀̽̇̓̄̓̃͋͋̂̽̔̀̎͌̈́̈́̑̓̔̀̓͐͛͆̿̋͑͛̈́͂̅̋̅͆͗̇́̀̒́̏͒̐̍͂̓͐͐̇̂̉̑̊͑̉̋̍͊̄̀͂̎͒̔͊̃̏̕̚̕̕͘͘͘̚͘̚͘̕͘̚͘̚̚̚̕͘͜͜͜͝͝͠͠͝͝͠͠͝͝͝͝͝͝͝͝͝ͅͅͅc̴̨̡̢̢̢̡̡̢̛̛̛̻͇̝̣͉͚͎͕̻̦͖̤̖͇̪̩̤̻̭̮̙̰̖̰̳̪̱̹̳̬͖̣͙̼̙̰̻̘͇͚̺̗̩̫̞̳̼̤͔͍͉̟͕̯̺͈̤̰̹̍̋́͆̾̆̊͆͋̀͑͒̄̿̄̀̂͋̊͆́͑̑̽͊̓́̔̽̌͊̄͑͒͐̑͗̿̃̀̓̅́̿͗̈́͌̋̀̏̂͌̓́̇̀͒͋̌̌̅͋͌̆͐̀̔̒͐̊̇̿̽̀̈́̃̒̋̀̈́̃̏̂̊͗̑̊̈̇̀̌͐̈́̉̂̏͊̄͐̈̽͒̏̒̓́̌̓̅́̓̃͐͊͒̄͑̒͌̍̈́̕͘̚͘̕͘̚̕͜͝͠͝͝͝ͅǩ̴̢̢̢̧̨̢̢̢̨̨̨̢̢̢̨̧̨̡̡̢̛̛̛̛̛̛̛̜̥̩̙͕̮̪̻͈̘̯̼̰̜͚̰͖̬̳͖̣̭̼͔̲͉̭̺͚̺̟͉̝̱̲͎͉̙̥̤͚͙̬̪̜̺͙͍̱̞̭̬̩̖̤̹̤̺̦͈̰̗̰͍͇̱̤̬̬͙̙̲̙̜͖͓̙̟̙̯̪͍̺̥͔͕̝̳̹̻͇̠̣͈̰̦͓͕̩͇͈͇̖͙͍̰̲̤̞͎̟̝̝͈͖͔͖̦̮̗̬̞̞̜̬̠̹̣̣̲̮̞̤̜̤̲̙͔͕̯͔͍̤͕̣͔͙̪̫̝̣̰̬̬̭̞͔̦̟̥̣̻͉͈̮̥̦̮̦͕̤͇̺͆͆̈͗̄̀̌̔̈́̈̉̾̊̐̆̂͛̀̋́̏̀̿͒̓̈́̈́͂̽̾͗͊̋̐̓̓̀̃̊̊͑̓̈̎̇͑̆̂̉̾̾̑͊̉̃́̑͌̀̌̐̅̃̿̆̎̈́̀̒́͛̓̀̊́̋͛͒͊̆̀̃̊͋̋̾̇̒̋͂̏͗͆̂̔́̐̀́͗̅̈̋̂̎̒͊̌̉̈̈́͌̈́̔̾̊̎́͐͒̋̽̽́̾̿̚̕͘͘̚̕̕̕̚̚̕̚̕͘͜͜͜͝͠͝͝͝͝͝͝͝͝ͅͅͅͅͅͅB̸̢̧̨̡̢̧̨̡̡̨̡̨̡̡̡̢̨̢̨̛̛̛̛̛̛͉̞͚̰̭̲͈͎͕͈̦͍͈̮̪̤̻̻͉̫̱͔̞̫̦̰͈̗̯̜̩̪̲̻̖̳͖̦͎͔̮̺̬̬̼̦̠̪̤͙͍͓̜̥̙̖̫̻̜͍̻̙̖̜̹͔̗̪̜̖̼̞̣̠̫͉̯̮̤͈͎̝̪͎͇͙̦̥͙̳̫̰̪̣̱̘̤̭̱͍̦͔̖͎̺̝̰̦̱̣͙̙̤͚̲͔̘̱̜̻͔̥̻͖̭͔̜͉̺͕͙͖̜͉͕̤͚̠̩̮̟͚̗͈͙̟̞̮̬̺̻̞͔̥͉͍̦̤͓̦̻̦̯̟̰̭̝̘̩̖̝͔̳͉̗̖̱̩̩̟͙͙͛̀͐̈́̂̇͛̅̒̉̏̈́̿͐́̏̃̏̓̌̽͐̈́͛̍͗͆͛̋̔̉͂̔̂̓̌͌͋̂͆̉͑̊̎́̈́̈̂͆͑́̃̍̇̿̅̾́́̿̅̾̆̅̈́̈̓͒͌͛̃͆̋͂̏̓̅̀͂̽̂̈̈́̎̾̐͋͑̅̍̈́̑̅̄͆̓̾̈́͐̎̊͐̌̌̓͊̊̔̈́̃͗̓͊͐̌͆̓͗̓̓̾̂̽͊͗́́́̽͊͆͋͊̀̑̿̔͒̏̈́́̏͆̈́͋̒͗͂̄̇̒͐̃͑̅̍͒̎̈́̌̋́̓͂̀̇͛̋͊͆̈́̋́̍̃͒̆̕̚̚̕̕̕͘̕̚̚͘̕͜͜͜͜͝͠͠͝͠͝͝͝͝͠͝͝͝͝ͅͅͅͅͅI̵̡̢̧̨̡̢̨̡̡̢̡̧̡̢̢̢̡̢̛̛͕͎͕̩̠̹̩̺̣̳̱͈̻̮̺̟̘̩̻̫͖̟͓̩̜̙͓͇̙̱̭̰̻̫̥̗̠͍͍͚̞̘̫͉̬̫̖̖̦͖͉̖̩̩̖̤̺̥̻̝͈͎̻͓̟̹͍̲͚͙̹̟̟̯͚̳̟͕̮̻̟͈͇̩̝̼̭̯͚͕̬͇̲̲̯̰̖̙̣̝͇̠̞̙͖͎̮̬̳̥̣̺̰͔̳̳̝̩̤̦̳̞̰̩̫̟͚̱̪̘͕̫̼͉̹̹̟̮̱̤̜͚̝̠̤̖̮̯̳͖̗̹̞̜̹̭̿̏͋̒͆̔̄̃̾̓͛̾̌́̅̂͆̔͌͆͋̔̾́̈̇̐̄̑̓̂̾́̄̿̓̅̆͌̉̎̏̄͛̉͆̓̎͒͘̕̕͜͜͜͜͜͜͜͝͠ͅͅƠ̷̢̛̛̛̛̛̛̛̛̟̰͔͔͇̲̰̮̘̭̭̖̥̟̘̠̬̺̪͇̲͋͂̅̈́̍͂̽͗̾͒̇̇̒͐̍̽͊́̑̇̑̾̉̓̈̾͒̍̌̅̒̾̈́̆͌̌̾̎̽̐̅̏́̈̔͛̀̋̃͊̒̓͗͒̑͒̃͂̌̄̇̑̇͛̆̾͛̒̇̍̒̓̀̈́̄̐͂̍͊͗̎̔͌͛̂̏̉̊̎͗͊͒̂̈̽̊́̔̊̃͑̈́̑̌̋̓̅̔́́͒̄̈́̈̂͐̈̅̈̓͌̓͊́̆͌̉͐̊̉͛̓̏̓̅̈́͂̉̒̇̉̆̀̍̄̇͆͛̏̉̑̃̓͂́͋̃̆̒͋̓͊̄́̓̕̕̕̚͘͘͘̚̕̚͘̕̕͜͜͝͝͝͠͝͝͝͝͠ͅS̷̢̨̧̢̡̨̢̨̢̨̧̧̨̧͚̱̪͇̱̮̪̮̦̝͖̜͙̘̪̘̟̱͇͎̻̪͚̩͍̠̹̮͚̦̝̤͖̙͔͚̙̺̩̥̻͈̺̦͕͈̹̳̖͓̜͚̜̭͉͇͖̟͔͕̹̯̬͍̱̫̮͓̙͇̗̙̼͚̪͇̦̗̜̼̠͈̩̠͉͉̘̱̯̪̟͕̘͖̝͇̼͕̳̻̜͖̜͇̣̠̹̬̗̝͓̖͚̺̫͛̉̅̐̕͘͜͜͜͜ͅͅͅ.̶̨̢̢̨̢̨̢̛̻͙̜̼̮̝̙̣̘̗̪̜̬̳̫̙̮̣̹̥̲̥͇͈̮̟͉̰̮̪̲̗̳̰̫̙͍̦̘̠̗̥̮̹̤̼̼̩͕͉͕͇͙̯̫̩̦̟̦̹͈͔̱̝͈̤͓̻̟̮̱͖̟̹̝͉̰͊̓̏̇͂̅̀̌͑̿͆̿̿͗̽̌̈́̉̂̀̒̊̿͆̃̄͑͆̃̇͒̀͐̍̅̃̍̈́̃̕͘͜͜͝͠͠z̴̢̢̡̧̢̢̧̢̨̡̨̛̛̛̛̛̛̛̛̲͚̠̜̮̠̜̞̤̺͈̘͍̻̫͖̣̥̗̙̳͓͙̫̫͖͍͇̬̲̳̭̘̮̤̬̖̼͎̬̯̼̮͔̭̠͎͓̼̖̟͈͓̦̩̦̳̙̮̗̮̩͙͓̮̰̜͎̺̞̝̪͎̯̜͈͇̪̙͎̩͖̭̟͎̲̩͔͓͈͌́̿͐̍̓͗͑̒̈́̎͂̋͂̀͂̑͂͊͆̍͛̄̃͌͗̌́̈̊́́̅͗̉͛͌͋̂̋̇̅̔̇͊͑͆̐̇͊͋̄̈́͆̍̋̏͑̓̈́̏̀͒̂̔̄̅̇̌̀̈́̿̽̋͐̾̆͆͆̈̌̿̈́̎͌̊̓̒͐̾̇̈́̍͛̅͌̽́̏͆̉́̉̓̅́͂͛̄̆͌̈́̇͐̒̿̾͌͊͗̀͑̃̊̓̈̈́̊͒̒̏̿́͑̄̑͋̀̽̀̔̀̎̄͑̌̔́̉̐͛̓̐̅́̒̎̈͆̀̍̾̀͂̄̈́̈́̈́̑̏̈́̐̽̐́̏̂̐̔̓̉̈́͂̕̚̕͘͘̚͘̚̕̚̚̚͘̕̕̕͜͜͝͠͠͝͝͝͝͠͝͝͝͠͝͝͝͝͝͝ͅͅͅī̸̧̧̧̡̨̨̢̨̛̛̘͓̼̰̰̮̗̰͚̙̥̣͍̦̺͈̣̻͇̱͔̰͈͓͖͈̻̲̫̪̲͈̜̲̬̖̻̰̦̰͙̤̘̝̦̟͈̭̱̮̠͍̖̲͉̫͔͖͔͈̻̖̝͎̖͕͔̣͈̤̗̱̀̅̃̈́͌̿̏͋̊̇̂̀̀̒̉̄̈́͋͌̽́̈́̓̑̈̀̍͗͜͜͠͠ͅp̴̢̢̧̨̡̡̨̢̨̢̢̢̨̡̛̛͕̩͕̟̫̝͈̖̟̣̲̖̭̙͇̟̗͖͎̹͇̘̰̗̝̹̤̺͉͎̙̝̟͙͚̦͚͖̜̫̰͖̼̤̥̤̹̖͉͚̺̥̮̮̫͖͍̼̰̭̤̲͔̩̯̣͖̻͇̞̳̬͉̣̖̥̣͓̤͔̪̙͎̰̬͚̣̭̞̬͎̼͉͓̮͙͕̗̦̞̥̮̘̻͎̭̼͚͎͈͇̥̗͖̫̮̤̦͙̭͎̝͖̣̰̱̩͎̩͎̘͇̟̠̱̬͈̗͍̦̘̱̰̤̱̘̫̫̮̥͕͉̥̜̯͖̖͍̮̼̲͓̤̮͈̤͓̭̝̟̲̲̳̟̠͉̙̻͕͙̞͔̖͈̱̞͓͔̬̮͎̙̭͎̩̟̖͚̆͐̅͆̿͐̄̓̀̇̂̊̃̂̄̊̀͐̍̌̅͌̆͊̆̓́̄́̃̆͗͊́̓̀͑͐̐̇͐̍́̓̈́̓̑̈̈́̽͂́̑͒͐͋̊͊̇̇̆̑̃̈́̎͛̎̓͊͛̐̾́̀͌̐̈́͛̃̂̈̿̽̇̋̍͒̍͗̈͘̚̚͘̚͘͘͜͜͜͜͜͜͠͠͝͝ͅͅͅ☻♥■∞{╚mYÄÜXτ╕○\╚Θº£¥ΘBM@Q05♠{{↨↨▬§¶‼↕◄►☼1♦  wumbo╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ

Link to comment
Share on other sites

Link to post
Share on other sites

9 minutes ago, campy said:

You would need a ridiculous pump

I'm thinking it's not that you'd need a really strong pump provided the metal is fluid enough but rather change the principal of which the pump works. The most popular type of pump for watercooling is one that uses centrifugal force spinning water from the center-out, forcing the water to circulated. Alternatively for liquid metal you could use a pump that is piston based. It wouldn't necessarily be more powerful per-say but it'd work like the plunger in a tube of thermal compound or more accurately like in an engine block.

 

Piston goes down > inlet opens letting in metal > piston rises > inlet closes > output opens and cylider drains > repeat. It wouldn't be the most quiet but it should work fairly easily provided it's made of metals that can handle the metal fluid and the wear.

Link to comment
Share on other sites

Link to post
Share on other sites

8 minutes ago, Windows7ge said:

I'm thinking it's not that you'd need a really strong pump provided the metal is fluid enough but rather change the principal of which the pump works. The most popular type of pump for watercooling is one that uses centrifugal force spinning water from the center-out, forcing the water to circulated. Alternatively for liquid metal you could use a pump that is piston based. It wouldn't necessarily be more powerful per-say but it'd work like the plunger in a tube of thermal compound or more accurately like in an engine block.

 

Piston goes down > inlet opens letting in metal > piston rises > inlet closes > output opens and cylider drains > repeat. It wouldn't be the most quiet but it should work fairly easily provided it's made of metals that can handle the metal fluid and the wear.

reciprocating pumps are both loud and produce a lot of vibration.

 

A better solution would be a rotary vane pump.

 

however, you have to keep in mind that if the temperature of the metal would drop to below it's freezing point, you'd destroy the pump. not to much of a concern with Mercury, but Galium has little less than room temperature.

[FS][US] Corsair H115i 280mm AIO-AMD $60+shipping

 

 

System specs:
Asus Prime X370 Pro - Custom EKWB CPU/GPU 2x360 1x240 soft loop - Ryzen 1700X - Corsair Vengeance RGB 2x16GB - Plextor 512 NVMe + 2TB SU800 - EVGA GTX1080ti - LianLi PC11 Dynamic
 

Link to comment
Share on other sites

Link to post
Share on other sites

1 minute ago, knightslugger said:

A better solution would be a rotary vane pump.

Even better then if an appropriately sized one could be had for $60~75

Link to comment
Share on other sites

Link to post
Share on other sites

Everyone always brings up this idea but no one has been able to come up with a pump that would work. With liquid, you use the liquid to also lubricate the pump, however you can't use Liquid metal as a lubricant. @Windows7ge was maybe on to something with the piston idea, but you'd still need a lubricant. It works in cars since cars can also burn the oil based lubricant if any leaks past the rings. Something like this wouldn't work with liquid metal though.

Desktop: i9 11900k, 32GB DDR4, 4060 Ti 8GB 🙂

 

 

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

5 minutes ago, Theguywhobea said:

Everyone always brings up this idea but no one has been able to come up with a pump that would work. With liquid, you use the liquid to also lubricate the pump, however you can't use Liquid metal as a lubricant. @Windows7ge was maybe on to something with the piston idea, but you'd still need a lubricant. It works in cars since cars can also burn the oil based lubricant if any leaks past the rings. Something like this wouldn't work with liquid metal though.

Over time oil/grease lubricating the piston pump would "mix" with the metal and spin around the loop or worse the metal find its way past the seal and go into the underside of the piston reeking havoc.

 

I'm willing to bet there's a cost effective way of building a pump that would do the job well and reliably. I'm still kind of on the piston side method but looking up rotary vane pump shows something promising. It'd still have a seal that material might get through though.

Link to comment
Share on other sites

Link to post
Share on other sites

13 minutes ago, knightslugger said:

Mercury

Mercury is toxic, messy, conductive and can give of poisonous vapors.  It also expands and contracts with temperature changes.

Link to comment
Share on other sites

Link to post
Share on other sites

5 minutes ago, MikeSK said:

Mercury is toxic, messy, conductive and can give of poisonous vapors.  It also expands and contracts with temperature changes.

i'm not suggesting using it, it was brought up by the OP.

[FS][US] Corsair H115i 280mm AIO-AMD $60+shipping

 

 

System specs:
Asus Prime X370 Pro - Custom EKWB CPU/GPU 2x360 1x240 soft loop - Ryzen 1700X - Corsair Vengeance RGB 2x16GB - Plextor 512 NVMe + 2TB SU800 - EVGA GTX1080ti - LianLi PC11 Dynamic
 

Link to comment
Share on other sites

Link to post
Share on other sites

9 minutes ago, Windows7ge said:

Over time oil/grease lubricating the piston pump would "mix" with the metal and spin around the loop or worse the metal find its way past the seal and go into the underside of the piston reeking havoc.

 

I'm willing to bet there's a cost effective way of building a pump that would do the job well and reliably. I'm still kind of on the piston side method but looking up rotary vane pump shows something promising. It'd still have a seal that material might get through though.

Alright, but I'm not sure liquid metal work work in a radiator either. I'm not a mechanical engineer or anything so I don't know anything for sure, but I'm fairly certain that surface tension would cause issues in a radiator with very small veins. The surface tension on water is 70n/m where common liquid metals is around 500n/m. This is what causes it to bead up so much. I can't see that not causing an issue.

Desktop: i9 11900k, 32GB DDR4, 4060 Ti 8GB 🙂

 

 

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

On the subject of metals, what about galinstan?

signatures are for losers

wait...

Link to comment
Share on other sites

Link to post
Share on other sites

Still limited by the radiator/air thermal transfer efficiency. Most probably little performance gain.

Link to comment
Share on other sites

Link to post
Share on other sites

On 4/2/2018 at 2:34 PM, Theguywhobea said:

Everyone always brings up this idea but no one has been able to come up with a pump that would work. With liquid, you use the liquid to also lubricate the pump, however you can't use Liquid metal as a lubricant. @Windows7ge was maybe on to something with the piston idea, but you'd still need a lubricant. It works in cars since cars can also burn the oil based lubricant if any leaks past the rings. Something like this wouldn't work with liquid metal though.

Not true.  Liquid metals (use a gallium alloy - don't even go near mercury) are excellent electrical conductors.  The rotational force for a motor comes from an electrical current passing through an electrical conductor in a magnetic field.  The important detail is that the electrical conductor needs to be free to move.  Liquid metals are wonderfully free to move, they just need a little incentive (electromotive force).

 

Use a pair of neodymium magnets to establish a magnetic field across an insulated section of tubing.  Put a pair of electrodes at 90 degrees from the magnets (magnets on left/right and electrodes top/bottom).  Pass an electric current through the electrodes you start pumping metal.  The beauty is that the only moving component is the liquid metal itself.  Google "electromagnetic pump"

 

I ran a loop on a de-lidded i7 4770K.  It worked ridiculously well.  My core temperatures averaged 15 C over ambient or lower (translated 40 C or less) regardless of OC settings.  It was absolutely silent as well. Unfortunately it takes a fair amount of power to move a liquid metal due to its density.  You better be careful with your tubing runs.  That extra density adds to inertial forces when it makes a turn.  You want gradual bends.  90 degree turns cost you lost energy and the forces can force tubing connections apart.

 

Surface tension isn't the issue.  Surface tension is the work of cohesion - a measure of how much energy it takes to create new free surface area in a liquid.  Work of adhesion is the bigger concern here.  Work of adhesion is the energy required to create a new wetted surface area on a material.

 

You also need to pay attention to viscosity when you are pumping.  Viscosity is one of the parameters related to energy loses when you are pumping a fluid (as well as density, velocity and pipe diameter).  Fortunately eutectic gallium/indium has a rather low viscosity (about 2x water).

Link to comment
Share on other sites

Link to post
Share on other sites

1 hour ago, ANOriginalName said:

On the subject of metals, what about galinstan?

Galinstan is proprietary (gallium, indium, tin).  You can mix your own and get at least close to the galinstan composition.  I used gallium/indium (75.5% gallium, 24.5% indium by weight).  Melting point is about 16 C - below room temperature, but not by a lot.

Link to comment
Share on other sites

Link to post
Share on other sites

I think you would be better off just making some crazy custom solid copper heatsink that was just a big heatpipe assembly.

Link to comment
Share on other sites

Link to post
Share on other sites

Let's consider that we take away mercury's poisonous properties and we have a pump that could get it flowing. At the end of the day, I don't think it'd be any better than water:

  • It's still passing through a heat exchanger, which air takes over at that point.
  • It still won't go below ambient temperature.
  • Mercury has a lower specific heat than water (27.98 vs. 75 or so for water), meaning it'll reach the thermal equilibrium point faster. In fact, it's not much better than cooper or aluminum at ~24 for both. Though this might be offset by mercury's higher density over water

So even if you filled a system with mercury like a sealed AIO, all you really did was create a "flexible" metal heat pipe.

Link to comment
Share on other sites

Link to post
Share on other sites

i found this video on youtube, where a guy tried a liquid metal alloy as a coolant. But i must warn you, turn down the volume at the beginning of the vid, the intro is f****** loud .

 

 

CPU: Ryzen 7 7800X3D,  RAM: 64 GB Gskill Trident Z DDR5 @6200 Cl32, GPU: Asus RTX 4090 Strix OC, Pump: 2 Aquacomputer D5 Next @ 60% (~160 l/h), Radiators: 2 Mo-Ra3 360 and 1 XSPC  RX360V3 with 21 fans @650 RPM.

Link to comment
Share on other sites

Link to post
Share on other sites

1 hour ago, M.Yurizaki said:

Let's consider that we take away mercury's poisonous properties and we have a pump that could get it flowing. At the end of the day, I don't think it'd be any better than water:

  • It's still passing through a heat exchanger, which air takes over at that point.
  • It still won't go below ambient temperature.
  • Mercury has a lower specific heat than water (27.98 vs. 75 or so for water), meaning it'll reach the thermal equilibrium point faster. In fact, it's not much better than cooper or aluminum at ~24 for both. Though this might be offset by mercury's higher density over water

So even if you filled a system with mercury like a sealed AIO, all you really did was create a "flexible" metal heat pipe.

Specific heat is the amount of heat to increase the temperature of a unit mass of a material.  The density of mercury is 13.7x the density of water, not exactly a trivial difference.

 

There is no point in trying liquid metal if you don't de-lid.  The resistance through the TIM will be the limiting factor - not the radiator to air resistance.  When you run directly on the back of the CPU your distance for thermal conduction is a fraction of a millimeter.  When you use a cooling block you have to rely on conduction through a few mm of material.  The cooling fins inside blocks are to reduce the boundary layer thickness (stagnant film where heat transfer is by conduction from the cooling block to the bulk liquid).  Get rid of the cooling block and that fin to bulk liquid resistance is now directly on the CPU.

 

If you want to maximize performance then you have to de-lid and run whatever cooling media you are using (liquid metal in this case) directly on the CPU.  It is a lot of work to seal, but you maximize your ability to extract heat.  Another viable approach would be to use a phase change material (410A) on the CPU so it vaporizes.  Thin film boiling is the only other technology that can approach the thermal flux capabilities of liquid metal cooling.

 

Link to comment
Share on other sites

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×