Jump to content

Intel cpus = little cache

So recently I was comparing my cpu to a friend of mines he has a i9 9600kf and i have a r5 3600, why does mine have 35mb of cache and his has 9.5mb. Why does ryzen cpus in general just have so much more cache then intel?

CPU: Ryzen 5 3600

GPU: Gigabyte gtx 1660 Super oc 6g
Mobo:MSI b450 tomahawk max

RAM: 32gb ddr4 lpx vengeance 3200mhz

Storage: WD sn550 1tb, Baracuda 2TB HDD (*In use), Hitachi 2tb HDD, WD 0.5tb HDD (both HDD knackered)

PSU: cxm 450

Case: Corsair Carbide Series

Link to comment
Share on other sites

Link to post
Share on other sites

Because AMD could and decided "why not?" - so they added more cache. Cache sizes are reduced in lower end models - sometimes due to design (removing a CCX will remove the cache on Ryzen) - or just to separate products (mostly Intel does this so as to make i7 and i9 models appear faster in certain cache-heavy workloads)

Link to comment
Share on other sites

Link to post
Share on other sites

Because amd has more than one ccx and because they need to compensate for the latency somehow 

And one of the ways was to add more chache and obviously they have an extra ccx 

Meaning that each ccx has its own batch of cache.

PC: Motherboard: ASUS B550M TUF-Plus, CPU: Ryzen 3 3100, CPU Cooler: Arctic Freezer 34, GPU: GIGABYTE WindForce GTX1650S, RAM: HyperX Fury RGB 2x8GB 3200 CL16, Case, CoolerMaster MB311L ARGB, Boot Drive: 250GB MX500, Game Drive: WD Blue 1TB 7200RPM HDD.

 

Peripherals: GK61 (Optical Gateron Red) with Mistel White/Orange keycaps, Logitech G102 (Purple), BitWit Ensemble Grey Deskpad. 

 

Audio: Logitech G432, Moondrop Starfield, Mic: Razer Siren Mini (White).

 

Phone: Pixel 3a (Purple-ish).

 

Build Log: 

Link to comment
Share on other sites

Link to post
Share on other sites

Maybe it is needed to achieve good performance?

 

I know that Ryzen has slower RAM latency vs Intel. I wonder if this increase in latency carries forward into the cache as well?

 

Does the Ryzen cache have slower read/writes than Intel, so more is needed?

BabyBlu (Primary): 

  • CPU: Intel Core i9 9900K @ up to 5.3GHz, 5.0GHz all-core, delidded
  • Motherboard: Asus Maximus XI Hero
  • RAM: G.Skill Trident Z RGB 4x8GB DDR4-3200 @ 4000MHz 16-18-18-34
  • GPU: MSI RTX 2080 Sea Hawk EK X, 2070MHz core, 8000MHz mem
  • Case: Phanteks Evolv X
  • Storage: XPG SX8200 Pro 2TB, 3x ADATASU800 1TB (RAID 0), Samsung 970 EVO Plus 500GB
  • PSU: Corsair HX1000i
  • Display: MSI MPG341CQR 34" 3440x1440 144Hz Freesync, Dell S2417DG 24" 2560x1440 165Hz Gsync
  • Cooling: Custom water loop (CPU & GPU), Radiators: 1x140mm(Back), 1x280mm(Top), 1x420mm(Front)
  • Keyboard: Corsair Strafe RGB (Cherry MX Brown)
  • Mouse: MasterMouse MM710
  • Headset: Corsair Void Pro RGB
  • OS: Windows 10 Pro

Roxanne (Wife Build):

  • CPU: Intel Core i7 4790K @ up to 5.0GHz, 4.8Ghz all-core, relidded w/ LM
  • Motherboard: Asus Z97A
  • RAM: G.Skill Sniper 4x8GB DDR3-2400 @ 10-12-12-24
  • GPU: EVGA GTX 1080 FTW2 w/ LM
  • Case: Corsair Vengeance C70, w/ Custom Side-Panel Window
  • Storage: Samsung 850 EVO 250GB, Samsung 860 EVO 1TB, Silicon Power A80 2TB NVME
  • PSU: Corsair AX760
  • Display: Samsung C27JG56 27" 2560x1440 144Hz Freesync
  • Cooling: Corsair H115i RGB
  • Keyboard: GMMK TKL(Kailh Box White)
  • Mouse: Glorious Model O-
  • Headset: SteelSeries Arctis 7
  • OS: Windows 10 Pro

BigBox (HTPC):

  • CPU: Ryzen 5800X3D
  • Motherboard: Gigabyte B550i Aorus Pro AX
  • RAM: Corsair Vengeance LPX 2x8GB DDR4-3600 @ 3600MHz 14-14-14-28
  • GPU: MSI RTX 3080 Ventus 3X Plus OC, de-shrouded, LM TIM, replaced mem therm pads
  • Case: Fractal Design Node 202
  • Storage: SP A80 1TB, WD Black SN770 2TB
  • PSU: Corsair SF600 Gold w/ NF-A9x14
  • Display: Samsung QN90A 65" (QLED, 4K, 120Hz, HDR, VRR)
  • Cooling: Thermalright AXP-100 Copper w/ NF-A12x15
  • Keyboard/Mouse: Rii i4
  • Controllers: 4X Xbox One & 2X N64 (with USB)
  • Sound: Denon AVR S760H with 5.1.2 Atmos setup.
  • OS: Windows 10 Pro

Harmonic (NAS/Game/Plex/Other Server):

  • CPU: Intel Core i7 6700
  • Motherboard: ASRock FATAL1TY H270M
  • RAM: 64GB DDR4-2133
  • GPU: Intel HD Graphics 530
  • Case: Fractal Design Define 7
  • HDD: 3X Seagate Exos X16 14TB in RAID 5
  • SSD: Inland Premium 512GB NVME, Sabrent 1TB NVME
  • Optical: BDXL WH14NS40 flashed to WH16NS60
  • PSU: Corsair CX450
  • Display: None
  • Cooling: Noctua NH-U14S
  • Keyboard/Mouse: None
  • OS: Windows 10 Pro

NAS:

  • Synology DS216J
  • 2x8TB WD Red NAS HDDs in RAID 1. 8TB usable space
Link to comment
Share on other sites

Link to post
Share on other sites

Different architecture so not comparable. Just like asking why AMD graphics cards have greater memory bandwidth against Nvidia's competitor at the same performance range.

CPU: i7-2600K 4751MHz 1.44V (software) --> 1.47V at the back of the socket Motherboard: Asrock Z77 Extreme4 (BCLK: 103.3MHz) CPU Cooler: Noctua NH-D15 RAM: Adata XPG 2x8GB DDR3 (XMP: 2133MHz 10-11-11-30 CR2, custom: 2203MHz 10-11-10-26 CR1 tRFC:230 tREFI:14000) GPU: Asus GTX 1070 Dual (Super Jetstream vbios, +70(2025-2088MHz)/+400(8.8Gbps)) SSD: Samsung 840 Pro 256GB (main boot drive), Transcend SSD370 128GB PSU: Seasonic X-660 80+ Gold Case: Antec P110 Silent, 5 intakes 1 exhaust Monitor: AOC G2460PF 1080p 144Hz (150Hz max w/ DP, 121Hz max w/ HDMI) TN panel Keyboard: Logitech G610 Orion (Cherry MX Blue) with SteelSeries Apex M260 keycaps Mouse: BenQ Zowie FK1

 

Model: HP Omen 17 17-an110ca CPU: i7-8750H (0.125V core & cache, 50mV SA undervolt) GPU: GTX 1060 6GB Mobile (+80/+450, 1650MHz~1750MHz 0.78V~0.85V) RAM: 8+8GB DDR4-2400 18-17-17-39 2T Storage: HP EX920 1TB PCIe x4 M.2 SSD + Crucial MX500 1TB 2.5" SATA SSD, 128GB Toshiba PCIe x2 M.2 SSD (KBG30ZMV128G) gone cooking externally, 1TB Seagate 7200RPM 2.5" HDD (ST1000LM049-2GH172) left outside Monitor: 1080p 126Hz IPS G-sync

 

Desktop benching:

Cinebench R15 Single thread:168 Multi-thread: 833 

SuperPi (v1.5 from Techpowerup, PI value output) 16K: 0.100s 1M: 8.255s 32M: 7m 45.93s

Link to comment
Share on other sites

Link to post
Share on other sites

The way you count it matters too. Don't add it all up, unless you know you can.

 

Mainstream Intel CPUs historically had an inclusive cache. Whatever is in L2 is also in L3. So you just look at the L3 as indicator. The 9600KF has 9MB, or 1.5MB/core. It is easier to look at them per-core as generally Intel gives you 1.5MB/core on i5, 2MB/core on i7 and above, and some historic Xeons have 2.5MB/core. There are exceptions so don't take that as a hard rule, but it is often the case. For example, Broadwell on desktop only had 1MB/core of L3, but it had a 128MB L4 cache, which was unusual.

 

With Zen 2, AMD went large at 16MB of L3/CCX. Here we don't look at it per-core so much as per-CCX, since that is the more logical unit. I don't think AMD changed from recent history, and they run an exclusive cache. That means data in L2 doesn't get duplicated in L3, thus you can count them both for best case effective total cache. In practice, the L3 is so much bigger than the total L2, the L2 isn't really significant and may be ignored for simplicity.

 

Note AMD only started going large with Zen 2. Older Ryzen was still closer to 2MB/core than 4MB/core (assuming a fully loaded CCX, since the effective cache/core goes up if they disable more cores).

 

Oh, one more factor which isn't obvious. Intel's CPU cache is unified. Any core can reach any part of the L3 cache with only a small difference in latency depending on how far around the ring it has to go. On Ryzen, each CCX is isolated from each other. If it isn't local, you take a big penalty to go outside. Rumours are Zen 3 will go to a bigger CCX which will help that a lot.

Gaming system: R7 7800X3D, Asus ROG Strix B650E-F Gaming Wifi, Thermalright Phantom Spirit 120 SE ARGB, Corsair Vengeance 2x 32GB 6000C30, RTX 4070, MSI MPG A850G, Fractal Design North, Samsung 990 Pro 2TB, Acer Predator XB241YU 24" 1440p 144Hz G-Sync + HP LP2475w 24" 1200p 60Hz wide gamut
Productivity system: i9-7980XE, Asus X299 TUF mark 2, Noctua D15, 64GB ram (mixed), RTX 3070, NZXT E850, GameMax Abyss, Samsung 980 Pro 2TB, random 1080p + 720p displays.
Gaming laptop: Lenovo Legion 5, 5800H, RTX 3070, Kingston DDR4 3200C22 2x16GB 2Rx8, Kingston Fury Renegade 1TB + Crucial P1 1TB SSD, 165 Hz IPS 1080p G-Sync Compatible

Link to comment
Share on other sites

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×