Jump to content

Jumping Water Droplets Could Be the Future of Cooling Computers

Duke University

http://pratt.duke.edu/about/news/cooling-droplets

 

 

Seeker News: 

 

 

 

 

 

New technology adds a third dimension to cooling modern electronics

By Ken Kingery

 

Engineers have developed a technology to cool hotspots in high-performance electronics using the same physical phenomenon that cleans the wings of cicadas.

When water droplets merge, the reduction in surface area causes the release of a small amount of energy. So long as the surface beneath is hydrophobic enough to repel water, this energy is sufficient to make the merged droplet jump away.

On the wings of cicadas, this phenomenon drives droplets to catch and remove particles of dirt and debris. In the new cooling technology created by engineers at Duke University and Intel Corporation, droplets jump toward hotspots to bring cooling where the electronics need it most.

The results appear online on April 3, 2017, in the journal Applied Physics Letters.

“Hotspot cooling is very important for high-performance technologies,” said Chuan-Hua Chen, associate professor of mechanical engineering and materials science at Duke. “Computer processors and power electronics don’t perform as well if waste heat cannot be removed. A better cooling system will enable faster computers, longer-lasting electronics and more powerful electric vehicles.”

jumping droplets

When droplets merge on a super hydrophobic surface, the loss in surface area releases enough energy to make them jump up off the surface.

The new technology relies on a vapor chamber made of a super-hydrophobic floor with a sponge-like ceiling. When placed beneath operating electronics, moisture trapped in the ceiling vaporizes beneath emerging hotspots. The vapor escapes toward the floor, taking heat away from the electronics along with it.

Passive cooling structures integrated into the floor of the device then carry away the heat, causing the water vapor to condense into droplets. As the growing droplets merge, they naturally jump off the hydrophobic floor and back up into the ceiling beneath the hotspot, and the process repeats itself. This happens independent of gravity and regardless of orientation, even if the device is upside-down.

The technology has many advantages over existing cooling techniques. Thermoelectric coolers that act as tiny refrigerators cannot target random hotspot locations, making them inefficient for use over large areas. Other approaches can target moving hotspots, but require additional power inputs, which also leads to inefficiencies.

cooling schematic

A schematic of how the new jumping droplets electronics cooling system works

The jumping-droplet cooling technology also has a built-in mechanism for vertical heat escape, which is a major advantage over today’s heat spreaders that mostly dissipate heat in a single plane.

“As an analogy, to avoid flooding, it is useful to spread the rain over a large area. But if the ground is soaked, the water has no vertical pathway to escape, and flooding is inevitable,” said Chen. “Flat-plate heat pipes are remarkable in their horizontal spreading, but lack a vertical mechanism to dissipate heat. Our jumping-droplet technology addresses this technological void with a vertical heat spreading mechanism, opening a pathway to beat the best existing heat spreaders in all directions.”

There is still much work to be done before Chen’s jumping droplets can compete with today’s cooling technologies. The main challenge is to find suitable materials that work with high-heat vapor over the long term. But Chen remains optimistic.

“It has taken us a few years to work the system to a point where it’s at least comparable to a copper heat spreader, the most popular cooling solution,” said Chen. “But now, for the first time, I see a pathway to beating the industry standards.”

This work was supported by Intel Corporation and the National Science Foundation (CBET-12-36373, DMR-11-21107, DGF-11-06401).

“Hotspot cooling with jumping-drop vapor chambers,” Kris F. Wiedenheft, H. Alex Guo, Xiaopeng Qu, Jonathan B. Boreyko, Fangjie Liu, Kungang Zhang, Feras Eid, Arnab Choudhury, Zhihua Li and Chuan-Hua Chen. Applied Physics Letters, 2017. DOI: 10.1063/1.4979477

###

 

Link to comment
Share on other sites

Link to post
Share on other sites

12 minutes ago, ModuleLFS said:

im still not letting liquids near my hardware

Good luck getting any cooling done ever.

 

Whaddaya think's in heatpipes?

 

 

Anyway, cool tech, but by the time this will arrive I'll be 80 years old. As how it always goes with cool tech, someone thinks of a cool idea but then forgets to think about a cost efficient and fast way to mass produce it.

Ye ole' train

Link to comment
Share on other sites

Link to post
Share on other sites

3 minutes ago, lots of unexplainable lag said:

Whaddaya think's in heatpipes?

The difference is that heatpipes don't leak, and if they do get punctured, the liquid evaporates instantly, so it can't kill hardware.

 

QUOTE/TAG ME WHEN REPLYING

Spend As Much Time Writing Your Question As You Want Me To Spend Responding To It.

If I'm wrong, please point it out. I'm always learning & I won't bite.

 

Desktop:

Delidded Core i7 4770K - GTX 1070 ROG Strix - 16GB DDR3 - Lots of RGB lights I never change

Laptop:

HP Spectre X360 - i7 8560U - MX150 - 2TB SSD - 16GB DDR4

Link to comment
Share on other sites

Link to post
Share on other sites

Old news, new article.

Come Bloody Angel

Break off your chains

And look what I've found in the dirt.

 

Pale battered body

Seems she was struggling

Something is wrong with this world.

 

Fierce Bloody Angel

The blood is on your hands

Why did you come to this world?

 

Everybody turns to dust.

 

Everybody turns to dust.

 

The blood is on your hands.

 

The blood is on your hands!

 

Pyo.

Link to comment
Share on other sites

Link to post
Share on other sites

50 minutes ago, RadiatingLight said:

The difference is that heatpipes don't leak, and if they do get punctured, the liquid evaporates instantly, so it can't kill hardware.

 

If you assemble it properly it wont leak ;) . And make sure you dont overheat the tube when you bend it :D .

Link to comment
Share on other sites

Link to post
Share on other sites

I think this was mentioned, knew about it. Anyway, it's cool, though how good yet to see I guess. 

| Ryzen 7 7800X3D | AM5 B650 Aorus Elite AX | G.Skill Trident Z5 Neo RGB DDR5 32GB 6000MHz C30 | Sapphire PULSE Radeon RX 7900 XTX | Samsung 990 PRO 1TB with heatsink | Arctic Liquid Freezer II 360 | Seasonic Focus GX-850 | Lian Li Lanccool III | Mousepad: Skypad 3.0 XL / Zowie GTF-X | Mouse: Zowie S1-C | Keyboard: Ducky One 3 TKL (Cherry MX-Speed-Silver)Beyerdynamic MMX 300 (2nd Gen) | Acer XV272U | OS: Windows 11 |

Link to comment
Share on other sites

Link to post
Share on other sites

I can't fathom how it can work upside down if one side is hydrophobic and the other side sponge like. 

 

When the sponge side was on the bottom the water wouldn't jump...

Link to comment
Share on other sites

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×