Jump to content

microchips/silicone printing

hi all, hope you are well.

 

i have a question, i gen do not know the answer to thought id start here.

 

why are microchips/processors etc printed on circular plates instead of square ones?

 

surely they can get more onto a square or rectangular plate, lots of wasted space on a circle it seems.

 

thanks

Link to comment
Share on other sites

Link to post
Share on other sites

Why are Silicon Wafers Round?

 

TL;DR:

Quote

Silicon wafers are made from a spinning mechanism. Wafers are thin cuts from a single silicon crystal that is formed with [from] an ingot is dipped into a liquid silicon “soup” and pulled out. For the single crystal to be made, the ingot is spun as it is pulled out, and the centrifugal force attracts and locks in the silicon molecules.

Note: emphasis/corrections mine.

 

Additional notes: silicon is the second most abundant element on this planet. Even if the specific grade of silicon needed for semiconductors (EGS - or Electronics Grade Silicon) makes this a lot less simple than "just using the second most abundant element", it still is negligible compared to the energy and precision requirements involved in the rest of the steps of making semiconductors. So that little silicon waste is totally acceptable, and contributes to keeping costs down.

Isn't windows three-sixty-five just a more recent version of windows three-eleven?

Link to comment
Share on other sites

Link to post
Share on other sites

1 minute ago, Tydfil said:

why are microchips/processors etc printed on circular plates instead of square ones?

Silicon (not silicone) wafers are cut from a silicon boule, which is produced somewhat like how you make a dipped candle. They're not square basically because it would make it harder to uniformly create the boule.

Main System (Byarlant): Ryzen 7 5800X | Asus B550-Creator ProArt | EK 240mm Basic AIO | 16GB G.Skill DDR4 3200MT/s CAS-14 | XFX Speedster SWFT 210 RX 6600 | Samsung 990 PRO 2TB / Samsung 960 PRO 512GB / 4× Crucial MX500 2TB (RAID-0) | Corsair RM750X | Mellanox ConnectX-3 10G NIC | Inateck USB 3.0 Card | Hyte Y60 Case | Dell U3415W Monitor | Keychron K4 Brown (white backlight)

 

Laptop (Narrative): Lenovo Flex 5 81X20005US | Ryzen 5 4500U | 16GB RAM (soldered) | Vega 6 Graphics | SKHynix P31 1TB NVMe SSD | Intel AX200 Wifi (all-around awesome machine)

 

Proxmox Server (Veda): Ryzen 7 3800XT | AsRock Rack X470D4U | Corsair H80i v2 | 64GB Micron DDR4 ECC 3200MT/s | 4x 10TB WD Whites / 4x 14TB Seagate Exos / 2× Samsung PM963a 960GB SSD | Seasonic Prime Fanless 500W | Intel X540-T2 10G NIC | LSI 9207-8i HBA | Fractal Design Node 804 Case (side panels swapped to show off drives) | VMs: TrueNAS Scale; Ubuntu Server (PiHole/PiVPN/NGINX?); Windows 10 Pro; Ubuntu Server (Apache/MySQL)


Media Center/Video Capture (Jesta Cannon): Ryzen 5 1600X | ASRock B450M Pro4 R2.0 | Noctua NH-L12S | 16GB Crucial DDR4 3200MT/s CAS-22 | EVGA GTX750Ti SC | UMIS NVMe SSD 256GB /

TEAMGROUP MS30 1TB | Corsair CX450M | Viewcast Osprey 260e Video Capture | Mellanox ConnectX-2 10G NIC | LG UH12NS30 BD-ROM | Silverstone Sugo SG-11 Case | Sony XR65A80K

 

Camera: Sony ɑ7II w/ Meike Grip | Sony SEL24240 | Samyang 35mm ƒ/2.8 | Sony SEL50F18F | Sony SEL2870 (kit lens) | PNY Elite Perfomance 512GB SDXC card

 

Network:

Spoiler
                           ┌─────────────── Office/Rack ────────────────────────────────────────────────────────────────────────────┐
Google Fiber Webpass ────── UniFi Security Gateway ─── UniFi Switch 8-60W ─┬─ UniFi Switch Flex XG ═╦═ Veda (Proxmox Virtual Switch)
(500Mbps↑/500Mbps↓)                             UniFi CloudKey Gen2 (PoE) ─┴─ Veda (IPMI)           ╠═ Veda-NAS (HW Passthrough NIC)
╔═══════════════════════════════════════════════════════════════════════════════════════════════════╩═ Narrative (Asus USB 2.5G NIC)
║ ┌────── Closet ──────┐   ┌─────────────── Bedroom ──────────────────────────────────────────────────────┐
╚═ UniFi Switch Flex XG ═╤═ UniFi Switch Flex XG ═╦═ Byarlant
   (PoE)                 │                        ╠═ Narrative (Cable Matters USB-PD 2.5G Ethernet Dongle)
                         │                        ╚═ Jesta Cannon*
                         │ ┌─────────────── Media Center ──────────────────────────────────┐
Notes:                   └─ UniFi Switch 8 ─────────┬─ UniFi Access Point nanoHD (PoE)
═══ is Multi-Gigabit                                ├─ Sony Playstation 4 
─── is Gigabit                                      ├─ Pioneer VSX-S520
* = cable passed to Bedroom from Media Center       ├─ Sony XR65A80K (Google TV)
** = cable passed from Media Center to Bedroom      └─ Work Laptop** (Startech USB-PD Dock)

Retired/Other:

Spoiler

Laptop (Rozen-Zulu): Sony VAIO VPCF13WFX | Core i7-740QM | 8GB Patriot DDR3 | GT 425M | Samsung 850EVO 250GB SSD | Blu-ray Drive | Intel 7260 Wifi (lived a good life, retired with honor)

Testbed/Old Desktop (Kshatriya): Xeon X5470 @ 4.0GHz | ZALMAN CNPS9500 | Gigabyte EP45-UD3L | 8GB Nanya DDR2 400MHz | XFX HD6870 DD | OCZ Vertex 3 Max-IOPS 120GB | Corsair CX430M | HooToo USB 3.0 PCIe Card | Osprey 230 Video Capture | NZXT H230 Case

TrueNAS Server (La Vie en Rose): Xeon E3-1241v3 | Supermicro X10SLL-F | Corsair H60 | 32GB Micron DDR3L ECC 1600MHz | 1x Kingston 16GB SSD / Crucial MX500 500GB

Link to comment
Share on other sites

Link to post
Share on other sites

It's how the wafers are made.  Pure silicon and gravity results in basically a candle like piece of material which then has its exterior polished and then wafer (discs) are cut from the material. See video below.

 

Then the machines that make chips (etching, deposition, masking etc) use very narrow light beams and ultra violet and lens and other optical equipment that works best with things that are round (same distance from the center towards the edges)...  Some process steps involve applying chemical solutions over the surface and using centrifugal forces to spread the liquid evenly across the disc, and these wouldn't work as well with square or other shapes...

The more you go towards the edges the more defects you get due to optics and other issues. It's complicated and hard to explain. ..

 

Search Youtube for  how processors / chips are made and you'll find videos showing the steps. 

 

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×