Jump to content

Thermal Paste on a Plastic Chip/CPU Package

Are there negative aspects to applying thermal paste to a plastic chip package, like the CPU on a Raspberry Pi 2 which does not have an IHS?

 

I appreciate your answer but before you respond, please consider the following:

 

1. I've researched this issue and have not found anything definitive either for or against it. All the equipment I've worked on use thermal pads on plastic packages, but then manufacturers shy away from thermal paste anyway, likely because it's expensive, messy, dries up, etc.

2. Please don't comment on why I need to cool a plastic package. There are plenty of practical applications for dissipating heat in a chip that isn't metal-backed or doesn't contain an IHS. Consider this an inquiry independent of the specific application.

3. I'm talking about typical thermal paste. Not an epoxy, not paste designed for extreme thermal conditions. The manufacturer's websites don't mention conflicts with a plastic package, but then that's not their target market either. The CPUs in their target market requiring active cooling have either shown an exposed die or have an Integrated Heat Spreader. This is an entirely different, albeit plausible application for thermal paste.

4. I've run heat sinks with thermal paste on plastic packaged CPUs for Pis, routers, switches and game consoles for years, but I've never seen anyone else do this, or more importantly, advise not to do this.

 

Thank you for your consideration!

Link to comment
Share on other sites

Link to post
Share on other sites

Wouldn't a thermal pad do the job just fine? You don't find anything about it because there is no reason to do it because better solutions exist.

 

Otherwise it should be fine, although unnecessary, to use a generic thermal compound in that way.

BabyBlu (Primary): 

  • CPU: Intel Core i9 9900K @ up to 5.3GHz, 5.0GHz all-core, delidded
  • Motherboard: Asus Maximus XI Hero
  • RAM: G.Skill Trident Z RGB 4x8GB DDR4-3200 @ 4000MHz 16-18-18-34
  • GPU: MSI RTX 2080 Sea Hawk EK X, 2070MHz core, 8000MHz mem
  • Case: Phanteks Evolv X
  • Storage: XPG SX8200 Pro 2TB, 3x ADATASU800 1TB (RAID 0), Samsung 970 EVO Plus 500GB
  • PSU: Corsair HX1000i
  • Display: MSI MPG341CQR 34" 3440x1440 144Hz Freesync, Dell S2417DG 24" 2560x1440 165Hz Gsync
  • Cooling: Custom water loop (CPU & GPU), Radiators: 1x140mm(Back), 1x280mm(Top), 1x420mm(Front)
  • Keyboard: Corsair Strafe RGB (Cherry MX Brown)
  • Mouse: MasterMouse MM710
  • Headset: Corsair Void Pro RGB
  • OS: Windows 10 Pro

Roxanne (Wife Build):

  • CPU: Intel Core i7 4790K @ up to 5.0GHz, 4.8Ghz all-core, relidded w/ LM
  • Motherboard: Asus Z97A
  • RAM: G.Skill Sniper 4x8GB DDR3-2400 @ 10-12-12-24
  • GPU: EVGA GTX 1080 FTW2 w/ LM
  • Case: Corsair Vengeance C70, w/ Custom Side-Panel Window
  • Storage: Samsung 850 EVO 250GB, Samsung 860 EVO 1TB, Silicon Power A80 2TB NVME
  • PSU: Corsair AX760
  • Display: Samsung C27JG56 27" 2560x1440 144Hz Freesync
  • Cooling: Corsair H115i RGB
  • Keyboard: GMMK TKL(Kailh Box White)
  • Mouse: Glorious Model O-
  • Headset: SteelSeries Arctis 7
  • OS: Windows 10 Pro

BigBox (HTPC):

  • CPU: Ryzen 5800X3D
  • Motherboard: Gigabyte B550i Aorus Pro AX
  • RAM: Corsair Vengeance LPX 2x8GB DDR4-3600 @ 3600MHz 14-14-14-28
  • GPU: MSI RTX 3080 Ventus 3X Plus OC, de-shrouded, LM TIM, replaced mem therm pads
  • Case: Fractal Design Node 202
  • Storage: SP A80 1TB, WD Black SN770 2TB
  • PSU: Corsair SF600 Gold w/ NF-A9x14
  • Display: Samsung QN90A 65" (QLED, 4K, 120Hz, HDR, VRR)
  • Cooling: Thermalright AXP-100 Copper w/ NF-A12x15
  • Keyboard/Mouse: Rii i4
  • Controllers: 4X Xbox One & 2X N64 (with USB)
  • Sound: Denon AVR S760H with 5.1.2 Atmos setup.
  • OS: Windows 10 Pro

Harmonic (NAS/Game/Plex/Other Server):

  • CPU: Intel Core i7 6700
  • Motherboard: ASRock FATAL1TY H270M
  • RAM: 64GB DDR4-2133
  • GPU: Intel HD Graphics 530
  • Case: Fractal Design Define 7
  • HDD: 3X Seagate Exos X16 14TB in RAID 5
  • SSD: Inland Premium 512GB NVME, Sabrent 1TB NVME
  • Optical: BDXL WH14NS40 flashed to WH16NS60
  • PSU: Corsair CX450
  • Display: None
  • Cooling: Noctua NH-U14S
  • Keyboard/Mouse: None
  • OS: Windows 10 Pro

NAS:

  • Synology DS216J
  • 2x8TB WD Red NAS HDDs in RAID 1. 8TB usable space
Link to comment
Share on other sites

Link to post
Share on other sites

6 minutes ago, HairlessMonkeyBoy said:

Wouldn't a thermal pad do the job just fine? You don't find anything about it because there is no reason to do it because better solutions exist.

 

Otherwise it should be fine, although unnecessary, to use a generic thermal compound in that way.

Once upon a time, I would have agreed with the "good enough" sentiment. But then, chips weren't running at GHz speeds and didn't contain throttling and burst technologies to manage heat to within a specific margin (consequently translating heat into performance). They also weren't pushed to their absolute thermal limits because a two-year runtime is considered acceptable, and there were no SoC's, increasing the complexity and heat sensitivity. Consider your GameBoy, if you ever had one. That plastic package chip has none of the technologies I mentioned. It runs at a specific frequency and generates a constant temperature well within the chip's performance envelope. Consequently, my GameBoy still works after 20+ years in service. But my Gameboy doesn't route traffic from 50+devices in real time.

 

In some applications, yes, a thermal pad would work. But it wasn't what I had on-hand. That's not the question.

Link to comment
Share on other sites

Link to post
Share on other sites

1 minute ago, Tiberiusisgame said:

Once upon a time, I would have agreed with the "good enough" sentiment. But then, chips weren't running at GHz speeds and didn't contain throttling and burst technologies to manage heat to within a specific margin (consequently translating heat into performance). They also weren't pushed to their absolute thermal limits because a two-year runtime is considered acceptable, and there were no SoC's, increasing the complexity and heat sensitivity. Consider your GameBoy, if you ever had one. That plastic package chip has none of the technologies I mentioned. It runs at a specific frequency and generates a constant temperature well within the chip's performance envelope. Consequently, my GameBoy still works after 20+ years in service. But my Gameboy doesn't route traffic from 50+devices in real time.

 

In some applications, yes, a thermal pad would work. But it wasn't what I had on-hand. That's not the question.

Fair enough.

BabyBlu (Primary): 

  • CPU: Intel Core i9 9900K @ up to 5.3GHz, 5.0GHz all-core, delidded
  • Motherboard: Asus Maximus XI Hero
  • RAM: G.Skill Trident Z RGB 4x8GB DDR4-3200 @ 4000MHz 16-18-18-34
  • GPU: MSI RTX 2080 Sea Hawk EK X, 2070MHz core, 8000MHz mem
  • Case: Phanteks Evolv X
  • Storage: XPG SX8200 Pro 2TB, 3x ADATASU800 1TB (RAID 0), Samsung 970 EVO Plus 500GB
  • PSU: Corsair HX1000i
  • Display: MSI MPG341CQR 34" 3440x1440 144Hz Freesync, Dell S2417DG 24" 2560x1440 165Hz Gsync
  • Cooling: Custom water loop (CPU & GPU), Radiators: 1x140mm(Back), 1x280mm(Top), 1x420mm(Front)
  • Keyboard: Corsair Strafe RGB (Cherry MX Brown)
  • Mouse: MasterMouse MM710
  • Headset: Corsair Void Pro RGB
  • OS: Windows 10 Pro

Roxanne (Wife Build):

  • CPU: Intel Core i7 4790K @ up to 5.0GHz, 4.8Ghz all-core, relidded w/ LM
  • Motherboard: Asus Z97A
  • RAM: G.Skill Sniper 4x8GB DDR3-2400 @ 10-12-12-24
  • GPU: EVGA GTX 1080 FTW2 w/ LM
  • Case: Corsair Vengeance C70, w/ Custom Side-Panel Window
  • Storage: Samsung 850 EVO 250GB, Samsung 860 EVO 1TB, Silicon Power A80 2TB NVME
  • PSU: Corsair AX760
  • Display: Samsung C27JG56 27" 2560x1440 144Hz Freesync
  • Cooling: Corsair H115i RGB
  • Keyboard: GMMK TKL(Kailh Box White)
  • Mouse: Glorious Model O-
  • Headset: SteelSeries Arctis 7
  • OS: Windows 10 Pro

BigBox (HTPC):

  • CPU: Ryzen 5800X3D
  • Motherboard: Gigabyte B550i Aorus Pro AX
  • RAM: Corsair Vengeance LPX 2x8GB DDR4-3600 @ 3600MHz 14-14-14-28
  • GPU: MSI RTX 3080 Ventus 3X Plus OC, de-shrouded, LM TIM, replaced mem therm pads
  • Case: Fractal Design Node 202
  • Storage: SP A80 1TB, WD Black SN770 2TB
  • PSU: Corsair SF600 Gold w/ NF-A9x14
  • Display: Samsung QN90A 65" (QLED, 4K, 120Hz, HDR, VRR)
  • Cooling: Thermalright AXP-100 Copper w/ NF-A12x15
  • Keyboard/Mouse: Rii i4
  • Controllers: 4X Xbox One & 2X N64 (with USB)
  • Sound: Denon AVR S760H with 5.1.2 Atmos setup.
  • OS: Windows 10 Pro

Harmonic (NAS/Game/Plex/Other Server):

  • CPU: Intel Core i7 6700
  • Motherboard: ASRock FATAL1TY H270M
  • RAM: 64GB DDR4-2133
  • GPU: Intel HD Graphics 530
  • Case: Fractal Design Define 7
  • HDD: 3X Seagate Exos X16 14TB in RAID 5
  • SSD: Inland Premium 512GB NVME, Sabrent 1TB NVME
  • Optical: BDXL WH14NS40 flashed to WH16NS60
  • PSU: Corsair CX450
  • Display: None
  • Cooling: Noctua NH-U14S
  • Keyboard/Mouse: None
  • OS: Windows 10 Pro

NAS:

  • Synology DS216J
  • 2x8TB WD Red NAS HDDs in RAID 1. 8TB usable space
Link to comment
Share on other sites

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×