Jump to content

Gamers Nexus starts detailed cooler testing

GDRRiley

Gamers nexus has after 3 years of refining testing methodology is going to begin to release CPU cooler tests.

The use a combination of synthetic and real wold.

They cover many of the mistakes made often in testing and what they are doing to eliminate them. From using the same CPU, board, Ram, PSU and GPU to testing on a heater representing a zen 3 CPU. The test using a heater has 3 spots on a ryzen IHS, representing the 2 main chiplets and the IO die
It is highly automated and covers thousands of points.

My thoughts, seems to be the most detailed and crazy testing done by any review website/channel. I hope it will finally answer some of those which cooler are better questions.

 

EDIT:

First review using it is now out.

 

Edited by GDRRiley
added more, reworded.

Good luck, Have fun, Build PC, and have a last gen console for use once a year. I should answer most of the time between 9 to 3 PST

NightHawk 3.0: R7 5700x @, B550A vision D, H105, 2x32gb Oloy 3600, Sapphire RX 6700XT  Nitro+, Corsair RM750X, 500 gb 850 evo, 2tb rocket and 5tb Toshiba x300, 2x 6TB WD Black W10 all in a 750D airflow.
GF PC: (nighthawk 2.0): R7 2700x, B450m vision D, 4x8gb Geli 2933, Strix GTX970, CX650M RGB, Obsidian 350D

Skunkworks: R5 3500U, 16gb, 500gb Adata XPG 6000 lite, Vega 8. HP probook G455R G6 Ubuntu 20. LTS

Condor (MC server): 6600K, z170m plus, 16gb corsair vengeance LPX, samsung 750 evo, EVGA BR 450.

Spirt  (NAS) ASUS Z9PR-D12, 2x E5 2620V2, 8x4gb, 24 3tb HDD. F80 800gb cache, trueNAS, 2x12disk raid Z3 stripped

PSU Tier List      Motherboard Tier List     SSD Tier List     How to get PC parts cheap    HP probook 445R G6 review

 

"Stupidity is like trying to find a limit of a constant. You are never truly smart in something, just less stupid."

Camera Gear: X-S10, 16-80 F4, 60D, 24-105 F4, 50mm F1.4, Helios44-m, 2 Cos-11D lavs

Link to comment
Share on other sites

Link to post
Share on other sites

Madladding intensifies

Bethesda PC:   R7 3700X  -  Asrock B550 Extreme 4  -  Corsair Dominator Platinum RGB 16GB@3.6GHz -  Zotac AMP Extreme 1080TI -  Samsung 860 Evo 256GB  -  WD Blue 2TB SSD -  500DX  -  Stock cooling lul  -  Rm650x

CrumpleBox V3:  Xeon X5680  -  Asus X58 Sabertooth  -  DDr3 16GB@1.33Ghz  -  Gigabyte 1660s -  TT smart RGB 700W  -  

Cooler Master Storm Trooper  -  120GB Samsung 850 Pro   -  LTT Edition Chromax NH-D15 ?

 

CrumpleBox 3 ROTF: I5-6400  -  MSI B150m Mortar  -  16GB 2133Mhz Vengeance Pro RGB  -  Strix 1070Ti - GTX 1070 FE  -  Adata 128GB SSD  -  Fractal Design Define C  -  Gammaxx 400V2  -  Cooler Master silent pro gold 1000W

CrumpleBox 2: i7-7820x - MSI X299 Raider - 32GB Thermaltake Toughram 3.6Ghz - 2x Sapphire Nitro Fury - 128GB PCie Adata SSD - O11 Dynamic - EVGA CLC 360 - Corsair RM1000X

 

Perhiperals:  Gateway 900p60 monitor  -  Dell 1024x768@75  -  Logi. G403 Carbon  -  Logi. G502  -  SteSer. Arctis 5  -  SteSer. Rival 110 - Corsair Strafe RGB MK.2

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

I remember back in 2012, a thread discussed if it might be best to simply cut out a block of metal to simulate a CPU and heat to 150W, 100W, 50W, and 35W. Then mount each cooler one by one onto that artificial metal block.

 

We've come really far. Wow.

Link to comment
Share on other sites

Link to post
Share on other sites

4 minutes ago, Tenelia said:

I remember back in 2012, a thread discussed if it might be best to simply cut out a block of metal to simulate a CPU and heat to 150W, 100W, 50W, and 35W. Then mount each cooler one by one onto that artificial metal block.

 

We've come really far. Wow.

Some reviews actually did that in the past, with various set thermal output.

"We also blind small animals with cosmetics.
We do not sell cosmetics. We just blind animals."

 

"Please don't mistake us for Equifax. Those fuckers are evil"

 

This PSA brought to you by Equifacks.
PMSL

Link to comment
Share on other sites

Link to post
Share on other sites

It baffles me that a lot of reviewers still dont noise normalize their GPU/CPU cooler tests. Thats one of the only ways to really show which cooler is better instead they're just benchmarking which fan spins the fastest.

Link to comment
Share on other sites

Link to post
Share on other sites

10 minutes ago, kakik09 said:

Doesn't Steve believe loop order matters, as opposed to Linus who doesn't? I wonder when this will be settled

You'll likely need to ask a thermal physics expert for a definitive answer, however  If everything I have read is to be believed it does matter as a mathematical technicality, but likely won't make much of a difference due to the overall cooling capacity and the heat sources combined.

Grammar and spelling is not indicative of intelligence/knowledge.  Not having the same opinion does not always mean lack of understanding.  

Link to comment
Share on other sites

Link to post
Share on other sites

4 hours ago, GDRRiley said:

I hope it will finally answer some of those which cooler are better questions.

The cooler made by Steve ?‍♂️

Link to comment
Share on other sites

Link to post
Share on other sites

Just now, leadeater said:

The cooler made by Steve ?‍♂️

He’s going to have all the data so he’ll just rig the gamers nexus tower cooler 9000 to be the best. 

Good luck, Have fun, Build PC, and have a last gen console for use once a year. I should answer most of the time between 9 to 3 PST

NightHawk 3.0: R7 5700x @, B550A vision D, H105, 2x32gb Oloy 3600, Sapphire RX 6700XT  Nitro+, Corsair RM750X, 500 gb 850 evo, 2tb rocket and 5tb Toshiba x300, 2x 6TB WD Black W10 all in a 750D airflow.
GF PC: (nighthawk 2.0): R7 2700x, B450m vision D, 4x8gb Geli 2933, Strix GTX970, CX650M RGB, Obsidian 350D

Skunkworks: R5 3500U, 16gb, 500gb Adata XPG 6000 lite, Vega 8. HP probook G455R G6 Ubuntu 20. LTS

Condor (MC server): 6600K, z170m plus, 16gb corsair vengeance LPX, samsung 750 evo, EVGA BR 450.

Spirt  (NAS) ASUS Z9PR-D12, 2x E5 2620V2, 8x4gb, 24 3tb HDD. F80 800gb cache, trueNAS, 2x12disk raid Z3 stripped

PSU Tier List      Motherboard Tier List     SSD Tier List     How to get PC parts cheap    HP probook 445R G6 review

 

"Stupidity is like trying to find a limit of a constant. You are never truly smart in something, just less stupid."

Camera Gear: X-S10, 16-80 F4, 60D, 24-105 F4, 50mm F1.4, Helios44-m, 2 Cos-11D lavs

Link to comment
Share on other sites

Link to post
Share on other sites

FrostyTech has been using a dedicated heating element instead of actual CPU to test coolers. It also allowed them to test based on raw wattage opposed to many things that affect CPU's and CPU coolers. May not be the most realistic representation in terms of workloads vs heat generated, but it basically throws it all away and if there is 250W of heat, that's 250W of heat. If one cooler can deal with this better than the other, it'll most likely scale the same in both down and up direction.

Link to comment
Share on other sites

Link to post
Share on other sites

Wow good stuff, I wonder how it compares to Anandtech's testing methodology! Either way, I respect the huge effort to design something like this just to test CPU coolers :) 

ʕ•ᴥ•ʔ

MacBook Pro 13" (2018) | ThinkPad x230 | iPad Air 2     

~(˘▾˘~)   (~˘▾˘)~

Link to comment
Share on other sites

Link to post
Share on other sites

I'm not actually sure how well they're going to implement this. And I'm not referring to their methodologies..... I'm talking about actually doing them. Mostly because we were supposed to get PSU testing done with them a while back (2018 they had their station set up) and so far I think we've gotten.... two PSU tests done (unless they only post them on Patreon?)

"Put as much effort into your question as you'd expect someone to give in an answer"- @Princess Luna

Make sure to Quote posts or tag the person with @[username] so they know you responded to them!

 RGB Build Post 2019 --- Rainbow 🦆 2020 --- Velka 5 V2.0 Build 2021

Purple Build Post ---  Blue Build Post --- Blue Build Post 2018 --- Project ITNOS

CPU i7-4790k    Motherboard Gigabyte Z97N-WIFI    RAM G.Skill Sniper DDR3 1866mhz    GPU EVGA GTX1080Ti FTW3    Case Corsair 380T   

Storage Samsung EVO 250GB, Samsung EVO 1TB, WD Black 3TB, WD Black 5TB    PSU Corsair CX750M    Cooling Cryorig H7 with NF-A12x25

Link to comment
Share on other sites

Link to post
Share on other sites

1 hour ago, TVwazhere said:

I'm not actually sure how well they're going to implement this. And I'm not referring to their methodologies..... I'm talking about actually doing them. Mostly because we were supposed to get PSU testing done with them a while back (2018 they had their station set up) and so far I think we've gotten.... two PSU tests done (unless they only post them on Patreon?)

This was even older. They seems to go the do it right or not at all 

Good luck, Have fun, Build PC, and have a last gen console for use once a year. I should answer most of the time between 9 to 3 PST

NightHawk 3.0: R7 5700x @, B550A vision D, H105, 2x32gb Oloy 3600, Sapphire RX 6700XT  Nitro+, Corsair RM750X, 500 gb 850 evo, 2tb rocket and 5tb Toshiba x300, 2x 6TB WD Black W10 all in a 750D airflow.
GF PC: (nighthawk 2.0): R7 2700x, B450m vision D, 4x8gb Geli 2933, Strix GTX970, CX650M RGB, Obsidian 350D

Skunkworks: R5 3500U, 16gb, 500gb Adata XPG 6000 lite, Vega 8. HP probook G455R G6 Ubuntu 20. LTS

Condor (MC server): 6600K, z170m plus, 16gb corsair vengeance LPX, samsung 750 evo, EVGA BR 450.

Spirt  (NAS) ASUS Z9PR-D12, 2x E5 2620V2, 8x4gb, 24 3tb HDD. F80 800gb cache, trueNAS, 2x12disk raid Z3 stripped

PSU Tier List      Motherboard Tier List     SSD Tier List     How to get PC parts cheap    HP probook 445R G6 review

 

"Stupidity is like trying to find a limit of a constant. You are never truly smart in something, just less stupid."

Camera Gear: X-S10, 16-80 F4, 60D, 24-105 F4, 50mm F1.4, Helios44-m, 2 Cos-11D lavs

Link to comment
Share on other sites

Link to post
Share on other sites

I wish that there would be a site like "Frostytech" used to be, for referencing all the coolers ...

Fingers crossed.

I edit my posts more often than not

Link to comment
Share on other sites

Link to post
Share on other sites

Good, this is the info I want

ƆԀ S₱▓Ɇ▓cs: i7 6ʇɥפᴉƎ00K (4.4ghz), Asus DeLuxe X99A II, GT҉X҉1҉0҉8҉0 Zotac Amp ExTrꍟꎭe),Si6F4Gb D???????r PlatinUm, EVGA G2 Sǝʌǝᘉ5ᙣᙍᖇᓎᙎᗅᖶt, Phanteks Enthoo Primo, 3TB WD Black, 500gb 850 Evo, H100iGeeTeeX, Windows 10, K70 R̸̢̡̭͍͕̱̭̟̩̀̀̃́̃͒̈́̈́͑̑́̆͘͜ͅG̶̦̬͊́B̸͈̝̖͗̈́, G502, HyperX Cloud 2s, Asus MX34. פN∩SW∀S 960 EVO

Just keeping this here as a backup 9̵̨̢̨̧̧̡̧̡̧̡̧̡̡̢̢̡̢̧̡̢̡̡̢̧̛̛̛̛̛̛̱̖͈̠̝̯̹͉̝̞̩̠̹̺̰̺̲̳͈̞̻̜̫̹̱̗̣͙̻̘͎̲̝͙͍͔̯̲̟̞͚̖̘͉̭̰̣͎͕̼̼̜̼͕͎̣͇͓͓͎̼̺̯͈̤̝͖̩̭͍̣̱̞̬̺̯̼̤̲͎̖̠̟͍̘̭͔̟̗̙̗̗̤̦͍̫̬͔̦̳̗̳͔̞̼̝͍̝͈̻͇̭̠͈̳͍̫̮̥̭͍͔͈̠̹̼̬̰͈̤͚̖̯͍͉͖̥̹̺͕̲̥̤̺̹̹̪̺̺̭͕͓̟̳̹͍̖͎̣̫͓͍͈͕̳̹̙̰͉͙̝̜̠̥̝̲̮̬͕̰̹̳͕̰̲̣̯̫̮͙̹̮͙̮̝̣͇̺̺͇̺̺͈̳̜̣̙̻̣̜̻̦͚̹̩͓͚̖͍̥̟͍͎̦͙̫̜͔̭̥͈̬̝̺̩͙͙͉̻̰̬̗̣͖̦͎̥̜̬̹͓͈͙̤̜̗͔̩̖̳̫̑̀̂̽̈́̈́̿͒̿̋̊͌̾̄̄̒̌͐̽̿̊͑̑̆͗̈̎̄͒̑̋͛̑͑̂͑̀͐̀͑̓͊̇͆̿͑͛͛͆́͆̓̿̇̀̓͑͆͂̓̾̏͊̀̇̍̃́̒̎̀̒̄̓̒̐̑̊̏̌̽̓͂͋̓̐̓͊̌͋̀̐̇̌̓̔͊̈̇́̏͒̋͊̓̆̋̈̀̌̔͆͑̈̐̈̍̀̉̋̈́͊̽͂̿͌͊̆̾̉͐̿̓̄̾͑̈́͗͗̂̂́̇͂̀̈́́̽̈́̓̓͂̽̓̀̄͌̐̔̄̄͒͌̈́̅̉͊̂͒̀̈́̌͂̽̀̑̏̽̀͑̐̐͋̀̀͋̓̅͋͗̍́͗̈́̆̏̇͊̌̏̔̑̐̈́͑̎͑͆̏̎́̑̍̏̒̌̊͘͘̚̕̚̕̕̚̕̚̕̕͜͜͜͜͜͝͝͠͠͝͝͝͝͝͝͝͠͝͝ͅͅͅͅͅͅͅ8̵̨̛̛̛̛̮͍͕̥͉̦̥̱̞̜̫̘̤̖̬͍͇͓̜̻̪̤̣̣̹̑͑̏̈́̐̐́̎͒̔͒̌̑̓̆̓͑̉̈́́͋̌͋͐͛͋̃̍̽̊͗͋͊̂̅͊͑́͋͛̉̏̓͌̾̈́̀͛͊̾͑̌̀̀̌̓̏̑́̄̉̌͂́͛̋͊̄͐͊̈́̀̌̆̎̿̓̔̍̎̀̍̚̕̕͘͘͘̕̚͝͝͠͠͠0̶̡̡̡̢̨̨͕̠̠͉̺̻̯̱̘͇̥͎͖̯͕̖̬̭͔̪̪͎̺̠̤̬̬̤̣̭̣͍̥̱̘̳̣̤͚̭̥͚̦͙̱̦͕̼͖͙͕͇̭͓͉͎̹̣̣͕̜͍͖̳̭͕̼̳̖̩͍͔̱̙̠̝̺̰̦̱̿̄̀͐͜͜ͅͅt̶̡̨̡̨̧̢̧̢̨̧̧̧̧̢̡̨̨̢̨̢̧̢̛̛̛̛̛̠͍̞̮͇̪͉̩̗̗͖̫͉͎͓̮̣̘̫͔̘̬̮̙̯̣͕͓̲̣͓͓̣̹̟͈̱͚̘̼̙̖̖̼̙̜̝͙̣̠̪̲̞̖̠̯̖̠̜̱͉̲̺͙̤̻̦̜͎̙̳̺̭̪̱͓̦̹̺͙̫̖̖̰̣͈͍̜̺̘͕̬̥͇̗̖̺̣̲̫̟̣̜̭̟̱̳̳̖͖͇̹̯̜̹͙̻̥̙͉͕̜͎͕̦͕̱͖͉̜̹̱̦͔͎̲̦͔̖̘̫̻̹̮̗̮̜̰͇̰͔̱͙̞̠͍͉͕̳͍̰̠̗̠̯̜̩͓̭̺̦̲̲͖̯̩̲̣̠͉̦̬͓̠̜̲͍̘͇̳̳͔̼̣͚̙͙͚͕̙̘̣̠͍̟̪̝̲͇͚̦̖͕̰̟̪͖̳̲͉͙̰̭̼̩̟̝̣̝̬̳͎̙̱͒̃̈͊̔͒͗̐̄̌͐͆̍͂̃̈́̾͗̅̐͒̓̆͛̂̾͋̍͂̂̄̇̿̈͌̅̈́̃̾̔̇̇̾̀͊͋̋̌̄͌͆͆̎̓̈́̾̊͊̇̌̔̈́̈́̀̐͊̊̍͑̊̈̓͑̀́̅̀̑̈́̽̃̽͛̇́̐̓̀͆̔̈̀̍̏̆̓̆͒̋́̋̍́̂̉͛̓̓̂̋̎́̒̏̈͋̃̽͆̓̀̔͑̈́̓͌͑̅̽́̐̍̉̑̓̈́͌̋̈́͂̊́͆͂̇̈́̔̃͌̅̈́͌͛̑̐̓̔̈́̀͊͛̐̾͐̔̾̈̃̈̄͑̓̋̇̉̉̚̕̚͘̕̚̚̕̕͜͜͜͜͜͜͜͜͜͜͜͜͜͝͝͝͠͝͝͝͝͝͠ͅͅͅͅͅi̵̢̧̢̧̡̧̢̢̧̢̢̢̡̡̡̧̧̡̡̧̛̛͈̺̲̫͕̞͓̥̖̭̜̫͉̻̗̭̖͔̮̠͇̩̹̱͈̗̭͈̤̠̮͙͇̲͙̰̳̹̲͙̜̟͚͎͓̦̫͚̻̟̰̣̲̺̦̫͓̖̯̝̬͉̯͓͈̫̭̜̱̞̹̪͔̤̜͙͓̗̗̻̟͎͇̺̘̯̲̝̫͚̰̹̫̗̳̣͙̮̱̲͕̺̠͉̫̖̟͖̦͉̟͈̭̣̹̱̖̗̺̘̦̠̯̲͔̘̱̣͙̩̻̰̠͓͙̰̺̠̖̟̗̖͉̞̣̥̝̤̫̫̜͕̻͉̺͚̣̝̥͇̭͎̖̦̙̲͈̲̠̹̼͎͕̩͓̖̥̘̱̜͙̹̝͔̭̣̮̗̞̩̣̬̯̜̻̯̩̮̩̹̻̯̬̖͂̈͂̒̇͗͑̐̌̎̑̽̑̈̈́͑̽́̊͋̿͊͋̅̐̈́͑̇̿̈́̌͌̊̅͂̎͆̏̓͂̈̿̏̃͑̏̓͆̔̋̎̕͘͘͘͜͜͜͜͜͜͜͝͝͠͠ͅͅͅͅͅͅͅͅͅZ̴̧̢̨̢̧̢̢̡̧̢̢̢̨̨̨̡̨̧̢̧̛̛̬̖͈̮̝̭̖͖̗̹̣̼̼̘̘̫̠̭̞͙͔͙̜̠̗̪̠̼̫̻͓̳̟̲̳̻̙̼͇̺͎̘̹̼͔̺̹̬̯̤̮̟͈̭̻͚̣̲͔͙̥͕̣̻̰͈̼̱̺̤̤͉̙̦̩̗͎̞͓̭̞̗͉̳̭̭̺̹̹̮͕̘̪̞̱̥͈̹̳͇̟̹̱̙͚̯̮̳̤͍̪̞̦̳̦͍̲̥̳͇̪̬̰̠͙͕̖̝̫̩̯̱̘͓͎̪͈̤̜͎̱̹̹̱̲̻͎̖̳͚̭̪̦̗̬͍̯̘̣̩̬͖̝̹̣̗̭͖̜͕̼̼̲̭͕͔̩͓̞̝͓͍̗̙̯͔̯̞̝̳̜̜͉̖̩͇̩̘̪̥̱͓̭͎͖̱̙̩̜͎̙͉̟͎͔̝̥͕͍͓̹̮̦̫͚̠̯͓̱͖͔͓̤͉̠͙̋͐̀͌̈́͆̾͆̑̔͂͒̀̊̀͋͑̂͊̅͐̿́̈́̐̀̏̋̃̄͆͒̈́̿̎́́̈̀̀͌̔͋͊̊̉̿͗͊͑̔͐̇͆͛̂̐͊̉̄̈́̄̐͂͂͒͑͗̓͑̓̾̑͋̒͐͑̾͂̎̋̃̽̂̅̇̿̍̈́́̄̍͂͑̏̐̾̎̆̉̾͂̽̈̆̔́͋͗̓̑̕͘̕͘͜͜͜͜͜͝͝͝͝͠͠͝ͅo̶̪͆́̀͂̂́̄̅͂̿͛̈́̿͊͗́͘͝t̴̡̨̧̨̧̡̧̨̡̢̧̢̡̨̛̪͈̣̭̺̱̪̹̺̣̬̖̣̻͈̞̙͇̩̻̫͈̝̭̟͎̻̟̻̝̱͔̝̼͍̞̼̣̘̤̯͓͉̖̠̤͔̜̙͚͓̻͓̬͓̻̜̯̱̖̳̱̗̠̝̥̩͓̗̪̙͓̖̠͎̗͎̱̮̯̮͙̩̫̹̹̖͙̙͖̻͈̙̻͇͔̙̣̱͔̜̣̭̱͈͕̠̹͙̹͇̻̼͎͍̥̘͙̘̤̜͎̟͖̹̦̺̤͍̣̼̻̱̲͎̗̹͉͙̪̞̻̹͚̰̻͈͈͊̈́̽̀̎̃̊́̈́̏̃̍̉̇̑̂̇̏̀͊̑̓͛̽͋̈́͆́̊͊̍͌̈́̓͊̌̿̂̾̐͑̓̀́͒̃̋̓͆̇̀͊̆͗̂͑͐̀͗̅̆͘̕͘̕̕͜͜͝͝͝͝͝͝͝ͅͅͅͅͅͅͅͅͅḁ̶̢̡̨̧̡̡̨̨̧̨̡̡̢̧̨̡̡̛̛̛͍̱̳͚͕̩͍̺̪̻̫̙͈̬͙̖͙̬͍̬̟̣̝̲̼̜̼̺͎̥̮̝͙̪̘̙̻͖͇͚͙̣̬̖̲̲̥̯̦̗̰̙̗̪̞̗̩̻̪̤̣̜̳̩̦̻͓̞̙͍͙̫̩̹̥͚̻̦̗̰̲̙̫̬̱̺̞̟̻͓̞͚̦̘̝̤͎̤̜̜̥̗̱͈̣̻̰̮̼̙͚͚̠͚̲̤͔̰̭̙̳͍̭͎̙͚͍̟̺͎̝͓̹̰̟͈͈̖̺͙̩̯͔̙̭̟̞̟̼̮̦̜̳͕̞̼͈̜͍̮͕̜͚̝̦̞̥̜̥̗̠̦͇͖̳͈̜̮̣͚̲̟͙̎̈́́͊̔̑̽̅͐͐͆̀͐́̓̅̈͑͑̍̿̏́͆͌̋̌̃̒̽̀̋̀̃̏̌́͂̿̃̎̐͊̒̀̊̅͒̎͆̿̈́̑̐̒̀̈́̓̾͋͆̇̋͒̎̈̄̓̂͊̆͂̈́̒̎͐̇̍̆̋̅̿̔͒̄̇̂̋̈́͆̎̔̇͊̊̈́̔̏͋́̀͂̈́̊͋͂̍̾̓͛̇̔̚͘̚̕̚͘͘̕̕̕̚͘͘̚̕̚̕͜͜͜͝͝͝͝͝͝͝͝ͅͅͅͅͅç̵̧̢̨̢̢̢̧̧̡̨̡̢̧̧̧̨̡̡̨̨̢̢̢̧̨̢̨̢̛̛͉̗̠͇̹̖̝͕͚͎̟̻͓̳̰̻̺̞̣͚̤͙͍͇̗̼͖͔͕͙͖̺͙̖̹̘̘̺͓̜͍̣̰̗̖̺̗̪̘̯̘͚̲͚̲̬̞̹̹͕̭͔̳̘̝̬͉̗̪͉͕̞̫͔̭̭̜͉͔̬̫͙̖̙͚͔͙͚͍̲̘͚̪̗̞̣̞̲͎͔͖̺͍͎̝͎͍̣͍̩̟͈͕̗͉̪̯͉͎͖͍̖͎̖̯̲̘̦̟̭͍͚͓͈͙̬͖̘̱̝̜̘̹̩̝̥̜͎̬͓̬͙͍͇͚̟̫͇̬̲̥̘̞̘̟̘̝̫͈̙̻͇͎̣̪̪̠̲͓͉͙͚̭̪͇̯̠̯̠͖̞̜͓̲͎͇̼̱̦͍͉͈͕͉̗̟̖̗̱̭͚͎̘͓̬͍̱͍̖̯̜̗̹̰̲̩̪͍̞̜̫̩̠͔̻̫͍͇͕̰̰̘͚͈̠̻̮͊̐̿̏̐̀̇̑̐̈͛͑͑̍̑̔̃̈́̓̈́̇̐͑̐̊̆͂̀̏͛̊̔̍̽͗͋̊̍̓̈́̏̅͌̀̽́̑͒͒̓͗̈́̎͌͂̕̚͘͘͜͜͜͜͜͠͝͝͝͝ͅͅͅͅͅͅͅS̵̡̡̧̧̨̨̡̢̡̡̡̡̧̧̡̧̢̫̯͔̼̲͉͙̱̮̭̗͖̯̤͙̜͚̰̮̝͚̥̜̞̠̤̺̝͇̻̱͙̩̲̺͍̳̤̺̖̝̳̪̻̗̮̪̖̺̹̭͍͇̗̝̱̻̳̝̖̝͎̙͉̞̱̯̙̜͇̯̻̞̱̭̗͉̰̮̞͍̫̺͙͎̙̞̯̟͓͉̹̲͖͎̼̫̩̱͇̲͓̪͉̺̞̻͎̤̥̭̺̘̻̥͇̤̖̰̘̭̳̫̙̤̻͇̪̦̭̱͎̥̟͖͕̣̤̩̟̲̭̹̦̹̣͖̖͒̈́̈́̓͗̈̄͂̈́̅̐̐̿̎̂͗̎̿̕͘͜͜͜͜͝͝ͅͅt̸̡̡̧̧̨̡̢̛̥̥̭͍̗͈̩͕͔͔̞̟͍̭͇̙̺̤͚͎͈͎͕̱͈̦͍͔͓̬͚̗̰̦͓̭̰̭̎̀̂̈́̓̒̈́̈́̂̄̋́̇̂͐͒̋̋̉͐̉̏̇͋̓̈́͐̾͋̒͒͐̊̊̀̄͆̄͆̑͆̇̊̓̚̚̕̚̕͜͠͝͝ͅͅơ̵̡̨̡̡̡̨̛̺͕̼͔̼̪̳͖͓̠̘̘̳̼͚͙͙͚̰͚͚͖̥̦̥̘̖̜̰͔̠͕̦͎̞̮͚͕͍̤̠̦͍̥̝̰̖̳̫̮̪͇̤̱̜͙͔̯͙̙̼͇̹̥̜͈̲̺̝̻̮̬̼̫̞̗̣̪̱͓̺̜̠͇͚͓̳̹̥̳̠͍̫͈̟͈̘̯̬̞͔̝͍͍̥̒̐͗͒͂͆̑̀̿̏́̀͑͗̐́̀̾̓́̌̇̒̈́̌̓͐̃̈́̒̂̀̾͂̊̀̂͐̃̄̓̔̽̒̈́̇̓͌̇̂̆̒̏̊̋͊͛͌̊̇̒̅͌̄̎̔̈́͊́̽̋̈̇̈́́͊̅͂̎̃͌͊͛͂̄̽̈́̿͐̉̽̿́́̉͆̈́̒́̂̾̄̇̌̒̈̅̍̿̐͑̓͊̈́̈̋̈́̉̍̋̊̈̀̈́̾̿̌̀̈́͌̑̍́̋̒̀̂̈́́̾̏̐̅̈̑͗͐̈͂̄̾̄̈́̍̉͑͛͗͋̈́̃̄̊́́͐̀̀̽̇̓̄̓̃͋͋̂̽̔̀̎͌̈́̈́̑̓̔̀̓͐͛͆̿̋͑͛̈́͂̅̋̅͆͗̇́̀̒́̏͒̐̍͂̓͐͐̇̂̉̑̊͑̉̋̍͊̄̀͂̎͒̔͊̃̏̕̚̕̕͘͘͘̚͘̚͘̕͘̚͘̚̚̚̕͘͜͜͜͝͝͠͠͝͝͠͠͝͝͝͝͝͝͝͝͝ͅͅͅc̴̨̡̢̢̢̡̡̢̛̛̛̻͇̝̣͉͚͎͕̻̦͖̤̖͇̪̩̤̻̭̮̙̰̖̰̳̪̱̹̳̬͖̣͙̼̙̰̻̘͇͚̺̗̩̫̞̳̼̤͔͍͉̟͕̯̺͈̤̰̹̍̋́͆̾̆̊͆͋̀͑͒̄̿̄̀̂͋̊͆́͑̑̽͊̓́̔̽̌͊̄͑͒͐̑͗̿̃̀̓̅́̿͗̈́͌̋̀̏̂͌̓́̇̀͒͋̌̌̅͋͌̆͐̀̔̒͐̊̇̿̽̀̈́̃̒̋̀̈́̃̏̂̊͗̑̊̈̇̀̌͐̈́̉̂̏͊̄͐̈̽͒̏̒̓́̌̓̅́̓̃͐͊͒̄͑̒͌̍̈́̕͘̚͘̕͘̚̕͜͝͠͝͝͝ͅǩ̴̢̢̢̧̨̢̢̢̨̨̨̢̢̢̨̧̨̡̡̢̛̛̛̛̛̛̛̜̥̩̙͕̮̪̻͈̘̯̼̰̜͚̰͖̬̳͖̣̭̼͔̲͉̭̺͚̺̟͉̝̱̲͎͉̙̥̤͚͙̬̪̜̺͙͍̱̞̭̬̩̖̤̹̤̺̦͈̰̗̰͍͇̱̤̬̬͙̙̲̙̜͖͓̙̟̙̯̪͍̺̥͔͕̝̳̹̻͇̠̣͈̰̦͓͕̩͇͈͇̖͙͍̰̲̤̞͎̟̝̝͈͖͔͖̦̮̗̬̞̞̜̬̠̹̣̣̲̮̞̤̜̤̲̙͔͕̯͔͍̤͕̣͔͙̪̫̝̣̰̬̬̭̞͔̦̟̥̣̻͉͈̮̥̦̮̦͕̤͇̺͆͆̈͗̄̀̌̔̈́̈̉̾̊̐̆̂͛̀̋́̏̀̿͒̓̈́̈́͂̽̾͗͊̋̐̓̓̀̃̊̊͑̓̈̎̇͑̆̂̉̾̾̑͊̉̃́̑͌̀̌̐̅̃̿̆̎̈́̀̒́͛̓̀̊́̋͛͒͊̆̀̃̊͋̋̾̇̒̋͂̏͗͆̂̔́̐̀́͗̅̈̋̂̎̒͊̌̉̈̈́͌̈́̔̾̊̎́͐͒̋̽̽́̾̿̚̕͘͘̚̕̕̕̚̚̕̚̕͘͜͜͜͝͠͝͝͝͝͝͝͝͝ͅͅͅͅͅͅB̸̢̧̨̡̢̧̨̡̡̨̡̨̡̡̡̢̨̢̨̛̛̛̛̛̛͉̞͚̰̭̲͈͎͕͈̦͍͈̮̪̤̻̻͉̫̱͔̞̫̦̰͈̗̯̜̩̪̲̻̖̳͖̦͎͔̮̺̬̬̼̦̠̪̤͙͍͓̜̥̙̖̫̻̜͍̻̙̖̜̹͔̗̪̜̖̼̞̣̠̫͉̯̮̤͈͎̝̪͎͇͙̦̥͙̳̫̰̪̣̱̘̤̭̱͍̦͔̖͎̺̝̰̦̱̣͙̙̤͚̲͔̘̱̜̻͔̥̻͖̭͔̜͉̺͕͙͖̜͉͕̤͚̠̩̮̟͚̗͈͙̟̞̮̬̺̻̞͔̥͉͍̦̤͓̦̻̦̯̟̰̭̝̘̩̖̝͔̳͉̗̖̱̩̩̟͙͙͛̀͐̈́̂̇͛̅̒̉̏̈́̿͐́̏̃̏̓̌̽͐̈́͛̍͗͆͛̋̔̉͂̔̂̓̌͌͋̂͆̉͑̊̎́̈́̈̂͆͑́̃̍̇̿̅̾́́̿̅̾̆̅̈́̈̓͒͌͛̃͆̋͂̏̓̅̀͂̽̂̈̈́̎̾̐͋͑̅̍̈́̑̅̄͆̓̾̈́͐̎̊͐̌̌̓͊̊̔̈́̃͗̓͊͐̌͆̓͗̓̓̾̂̽͊͗́́́̽͊͆͋͊̀̑̿̔͒̏̈́́̏͆̈́͋̒͗͂̄̇̒͐̃͑̅̍͒̎̈́̌̋́̓͂̀̇͛̋͊͆̈́̋́̍̃͒̆̕̚̚̕̕̕͘̕̚̚͘̕͜͜͜͜͝͠͠͝͠͝͝͝͝͠͝͝͝͝ͅͅͅͅͅI̵̡̢̧̨̡̢̨̡̡̢̡̧̡̢̢̢̡̢̛̛͕͎͕̩̠̹̩̺̣̳̱͈̻̮̺̟̘̩̻̫͖̟͓̩̜̙͓͇̙̱̭̰̻̫̥̗̠͍͍͚̞̘̫͉̬̫̖̖̦͖͉̖̩̩̖̤̺̥̻̝͈͎̻͓̟̹͍̲͚͙̹̟̟̯͚̳̟͕̮̻̟͈͇̩̝̼̭̯͚͕̬͇̲̲̯̰̖̙̣̝͇̠̞̙͖͎̮̬̳̥̣̺̰͔̳̳̝̩̤̦̳̞̰̩̫̟͚̱̪̘͕̫̼͉̹̹̟̮̱̤̜͚̝̠̤̖̮̯̳͖̗̹̞̜̹̭̿̏͋̒͆̔̄̃̾̓͛̾̌́̅̂͆̔͌͆͋̔̾́̈̇̐̄̑̓̂̾́̄̿̓̅̆͌̉̎̏̄͛̉͆̓̎͒͘̕̕͜͜͜͜͜͜͜͝͠ͅͅƠ̷̢̛̛̛̛̛̛̛̛̟̰͔͔͇̲̰̮̘̭̭̖̥̟̘̠̬̺̪͇̲͋͂̅̈́̍͂̽͗̾͒̇̇̒͐̍̽͊́̑̇̑̾̉̓̈̾͒̍̌̅̒̾̈́̆͌̌̾̎̽̐̅̏́̈̔͛̀̋̃͊̒̓͗͒̑͒̃͂̌̄̇̑̇͛̆̾͛̒̇̍̒̓̀̈́̄̐͂̍͊͗̎̔͌͛̂̏̉̊̎͗͊͒̂̈̽̊́̔̊̃͑̈́̑̌̋̓̅̔́́͒̄̈́̈̂͐̈̅̈̓͌̓͊́̆͌̉͐̊̉͛̓̏̓̅̈́͂̉̒̇̉̆̀̍̄̇͆͛̏̉̑̃̓͂́͋̃̆̒͋̓͊̄́̓̕̕̕̚͘͘͘̚̕̚͘̕̕͜͜͝͝͝͠͝͝͝͝͠ͅS̷̢̨̧̢̡̨̢̨̢̨̧̧̨̧͚̱̪͇̱̮̪̮̦̝͖̜͙̘̪̘̟̱͇͎̻̪͚̩͍̠̹̮͚̦̝̤͖̙͔͚̙̺̩̥̻͈̺̦͕͈̹̳̖͓̜͚̜̭͉͇͖̟͔͕̹̯̬͍̱̫̮͓̙͇̗̙̼͚̪͇̦̗̜̼̠͈̩̠͉͉̘̱̯̪̟͕̘͖̝͇̼͕̳̻̜͖̜͇̣̠̹̬̗̝͓̖͚̺̫͛̉̅̐̕͘͜͜͜͜ͅͅͅ.̶̨̢̢̨̢̨̢̛̻͙̜̼̮̝̙̣̘̗̪̜̬̳̫̙̮̣̹̥̲̥͇͈̮̟͉̰̮̪̲̗̳̰̫̙͍̦̘̠̗̥̮̹̤̼̼̩͕͉͕͇͙̯̫̩̦̟̦̹͈͔̱̝͈̤͓̻̟̮̱͖̟̹̝͉̰͊̓̏̇͂̅̀̌͑̿͆̿̿͗̽̌̈́̉̂̀̒̊̿͆̃̄͑͆̃̇͒̀͐̍̅̃̍̈́̃̕͘͜͜͝͠͠z̴̢̢̡̧̢̢̧̢̨̡̨̛̛̛̛̛̛̛̛̲͚̠̜̮̠̜̞̤̺͈̘͍̻̫͖̣̥̗̙̳͓͙̫̫͖͍͇̬̲̳̭̘̮̤̬̖̼͎̬̯̼̮͔̭̠͎͓̼̖̟͈͓̦̩̦̳̙̮̗̮̩͙͓̮̰̜͎̺̞̝̪͎̯̜͈͇̪̙͎̩͖̭̟͎̲̩͔͓͈͌́̿͐̍̓͗͑̒̈́̎͂̋͂̀͂̑͂͊͆̍͛̄̃͌͗̌́̈̊́́̅͗̉͛͌͋̂̋̇̅̔̇͊͑͆̐̇͊͋̄̈́͆̍̋̏͑̓̈́̏̀͒̂̔̄̅̇̌̀̈́̿̽̋͐̾̆͆͆̈̌̿̈́̎͌̊̓̒͐̾̇̈́̍͛̅͌̽́̏͆̉́̉̓̅́͂͛̄̆͌̈́̇͐̒̿̾͌͊͗̀͑̃̊̓̈̈́̊͒̒̏̿́͑̄̑͋̀̽̀̔̀̎̄͑̌̔́̉̐͛̓̐̅́̒̎̈͆̀̍̾̀͂̄̈́̈́̈́̑̏̈́̐̽̐́̏̂̐̔̓̉̈́͂̕̚̕͘͘̚͘̚̕̚̚̚͘̕̕̕͜͜͝͠͠͝͝͝͝͠͝͝͝͠͝͝͝͝͝͝ͅͅͅī̸̧̧̧̡̨̨̢̨̛̛̘͓̼̰̰̮̗̰͚̙̥̣͍̦̺͈̣̻͇̱͔̰͈͓͖͈̻̲̫̪̲͈̜̲̬̖̻̰̦̰͙̤̘̝̦̟͈̭̱̮̠͍̖̲͉̫͔͖͔͈̻̖̝͎̖͕͔̣͈̤̗̱̀̅̃̈́͌̿̏͋̊̇̂̀̀̒̉̄̈́͋͌̽́̈́̓̑̈̀̍͗͜͜͠͠ͅp̴̢̢̧̨̡̡̨̢̨̢̢̢̨̡̛̛͕̩͕̟̫̝͈̖̟̣̲̖̭̙͇̟̗͖͎̹͇̘̰̗̝̹̤̺͉͎̙̝̟͙͚̦͚͖̜̫̰͖̼̤̥̤̹̖͉͚̺̥̮̮̫͖͍̼̰̭̤̲͔̩̯̣͖̻͇̞̳̬͉̣̖̥̣͓̤͔̪̙͎̰̬͚̣̭̞̬͎̼͉͓̮͙͕̗̦̞̥̮̘̻͎̭̼͚͎͈͇̥̗͖̫̮̤̦͙̭͎̝͖̣̰̱̩͎̩͎̘͇̟̠̱̬͈̗͍̦̘̱̰̤̱̘̫̫̮̥͕͉̥̜̯͖̖͍̮̼̲͓̤̮͈̤͓̭̝̟̲̲̳̟̠͉̙̻͕͙̞͔̖͈̱̞͓͔̬̮͎̙̭͎̩̟̖͚̆͐̅͆̿͐̄̓̀̇̂̊̃̂̄̊̀͐̍̌̅͌̆͊̆̓́̄́̃̆͗͊́̓̀͑͐̐̇͐̍́̓̈́̓̑̈̈́̽͂́̑͒͐͋̊͊̇̇̆̑̃̈́̎͛̎̓͊͛̐̾́̀͌̐̈́͛̃̂̈̿̽̇̋̍͒̍͗̈͘̚̚͘̚͘͘͜͜͜͜͜͜͠͠͝͝ͅͅͅ☻♥■∞{╚mYÄÜXτ╕○\╚Θº£¥ΘBM@Q05♠{{↨↨▬§¶‼↕◄►☼1♦  wumbo╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ╚̯̪̣͕̙̩̦͓͚̙̱̘̝̏̆ͤ̊̅ͩ̓̏̿͆̌Θ̼̯͉ͭͦ̃͊͑̉ͯͤ̈́ͬ͐̈́͊ͤͅº͍̪͇͖̝̣̪̙̫̞̦̥ͨ̂ͧ̄̿£̺̻̹̠̯͙͇̳ͬ̃̿͑͊ͨͣ

Link to comment
Share on other sites

Link to post
Share on other sites

That's neat, always great to see cooling potential of coolers. 

| Ryzen 7 7800X3D | AM5 B650 Aorus Elite AX | G.Skill Trident Z5 Neo RGB DDR5 32GB 6000MHz C30 | Sapphire PULSE Radeon RX 7900 XTX | Samsung 990 PRO 1TB with heatsink | Arctic Liquid Freezer II 360 | Seasonic Focus GX-850 | Lian Li Lanccool III | Mousepad: Skypad 3.0 XL / Zowie GTF-X | Mouse: Zowie S1-C | Keyboard: Ducky One 3 TKL (Cherry MX-Speed-Silver)Beyerdynamic MMX 300 (2nd Gen) | Acer XV272U | OS: Windows 11 |

Link to comment
Share on other sites

Link to post
Share on other sites

8 hours ago, mr moose said:

You'll likely need to ask a thermal physics expert for a definitive answer, however  If everything I have read is to be believed it does matter as a mathematical technicality, but likely won't make much of a difference due to the overall cooling capacity and the heat sources combined.

"Thermal physics expert" here.

 

It is measurably different mathematically, but if the loop flow is sufficient/normal, the dT from each effective pass is small enough that it doesn't matter in any practical sense. The thermal transfer bottlenecks are so huge in other locations that it IS irrelevant. 

 

In a **very** low flow rate situation the problem is dramatically different, and in that case the **safest** (technically least thermally efficient though) method would be to have a radiator between every major heat generating component.

 

 

On topic, cool stuff from Steve, honestly even the Anandtech method of a uniform heat source at given load is actually much better than other testing methods. Doing granularity in heat production is really cool, as long as they have flexibility to simulate other heating profiles since the zen2 version is likely to be less accurate than the uniform approximation for say a TR2 or Intel chip.

LINK-> Kurald Galain:  The Night Eternal 

Top 5820k, 980ti SLI Build in the World*

CPU: i7-5820k // GPU: SLI MSI 980ti Gaming 6G // Cooling: Full Custom WC //  Mobo: ASUS X99 Sabertooth // Ram: 32GB Crucial Ballistic Sport // Boot SSD: Samsung 850 EVO 500GB

Mass SSD: Crucial M500 960GB  // PSU: EVGA Supernova 850G2 // Case: Fractal Design Define S Windowed // OS: Windows 10 // Mouse: Razer Naga Chroma // Keyboard: Corsair k70 Cherry MX Reds

Headset: Senn RS185 // Monitor: ASUS PG348Q // Devices: Note 10+ - Surface Book 2 15"

LINK-> Ainulindale: Music of the Ainur 

Prosumer DYI FreeNAS

CPU: Xeon E3-1231v3  // Cooling: Noctua L9x65 //  Mobo: AsRock E3C224D2I // Ram: 16GB Kingston ECC DDR3-1333

HDDs: 4x HGST Deskstar NAS 3TB  // PSU: EVGA 650GQ // Case: Fractal Design Node 304 // OS: FreeNAS

 

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

4 hours ago, Curufinwe_wins said:

"Thermal physics expert" here.

 

It is measurably different mathematically, but if the loop flow is sufficient/normal, the dT from each effective pass is small enough that it doesn't matter in any practical sense. The thermal transfer bottlenecks are so huge in other locations that it IS irrelevant. 

 

 

Do I have it right if my understanding is that the first device in the loop will have the best thermal transfer and the last device will have the least, but because the system is more than capable, if you reversed the flow it would make little difference?

 

When you say transfer bottlenecks are so huge elsewere?  which parts of the system have the higher thermal resistance?

 

 

Grammar and spelling is not indicative of intelligence/knowledge.  Not having the same opinion does not always mean lack of understanding.  

Link to comment
Share on other sites

Link to post
Share on other sites

6 hours ago, mr moose said:

Do I have it right if my understanding is that the first device in the loop will have the best thermal transfer and the last device will have the least, but because the system is more than capable, if you reversed the flow it would make little difference?

 

When you say transfer bottlenecks are so huge elsewere?  which parts of the system have the higher thermal resistance?

 

 

It's more that the highest possible dT (between liquid and heatsource/sink) at all possible locations yields the highest performance.

 

For example the radiators are most effective when the water is hottest, and the water blocks are most effective when water is coolest. But if you had in theory a limitless number of heat sources in a row, eventually the water temp would rise enough that even in a single finite pass the liquid would be unable to cool the components, likewise with infinite radiator cooling, the limit is the ambient air temperature. 

 

 

So for example for CPUs, the limit is generally heat transfer through the small die(s) into larger IHS and through thermal paste into the block. Adding a higher performance block and increasing pump speed does relatively little to decrease temperatures at a given load (as load increases, this becomes less true). This is why high end air coolers perform basically the same as AIOs at low load. They hit performance bottlenecks shared between them.

 

For GPUs there is no IHS, and thus direct die cooling combined with a much larger die size means that water cooling is ludicrously more effective and thus temperatures of under 25-30C above ambient are very reasonable to achieve even at very low noise, even while aircoolers struggle to keep GPUs under 50C above ambient.

 

One way to think about heat transfer is through whats called resistance networks. I'm not sure how familiar you are with electrical resistance, but its a very similar analogy. The total thermal resistance (for an one-path problem) can be thought of as the sum of individual resistances. So R_die->IHS+ R_IHS->coolerblock+ R_coolerblock->air=R_total.

 

Given a set Q (energy flow) and set ambient temperature, its possible to calculate the source temperature via the total resistance (this is oversimplifying a bit, but still)

 

For large cpu coolers in particular, the first two resistances are very high and the third resistance is generally low.

 

Tossing out imaginary numbers here, suppose the first resistance is 800 ohms, the second is 200 ohms, and the third is 30 ohms for a total of 1030. Adding an infinite fluid flow and infinite internal block surface area (combined with infinite heat transfer to the air) would reduce the third number to 0 but only drop the total resistance from 1030 to 1000. Hardly a notable change.

LINK-> Kurald Galain:  The Night Eternal 

Top 5820k, 980ti SLI Build in the World*

CPU: i7-5820k // GPU: SLI MSI 980ti Gaming 6G // Cooling: Full Custom WC //  Mobo: ASUS X99 Sabertooth // Ram: 32GB Crucial Ballistic Sport // Boot SSD: Samsung 850 EVO 500GB

Mass SSD: Crucial M500 960GB  // PSU: EVGA Supernova 850G2 // Case: Fractal Design Define S Windowed // OS: Windows 10 // Mouse: Razer Naga Chroma // Keyboard: Corsair k70 Cherry MX Reds

Headset: Senn RS185 // Monitor: ASUS PG348Q // Devices: Note 10+ - Surface Book 2 15"

LINK-> Ainulindale: Music of the Ainur 

Prosumer DYI FreeNAS

CPU: Xeon E3-1231v3  // Cooling: Noctua L9x65 //  Mobo: AsRock E3C224D2I // Ram: 16GB Kingston ECC DDR3-1333

HDDs: 4x HGST Deskstar NAS 3TB  // PSU: EVGA 650GQ // Case: Fractal Design Node 304 // OS: FreeNAS

 

 

 

Link to comment
Share on other sites

Link to post
Share on other sites

15 minutes ago, Curufinwe_wins said:

But if you had in theory a limitless number of heat sources in a row, eventually the water temp would rise enough that even in a single finite pass the liquid would be unable to cool the components, likewise with infinite radiator cooling, the limit is the ambient air temperature. 

How instant gas hot water heating works, extremely basically.

 

12 hours ago, Curufinwe_wins said:

It is measurably different mathematically, but if the loop flow is sufficient/normal, the dT from each effective pass is small enough that it doesn't matter in any practical sense.

@mr moose

 

Back to this point, which you already covered well, the flow rate is at the core of this the reason loop order doesn't matter. Because the water is flowing through the system so quickly and not in contact with the heat source for very long at all along with all the mixing of the water due to the flow hot areas just aren't being created for the temperature scales and sensitivities here.

 

It's not like a bucket of cold water and poring a jug of hot water in to it, where the area of contact rapidly warms but on the edges of the bucket the water is still cold. You stir that water up in the bucket before poring the jug of hot water and you will get much more even rise in temperature of the water in the bucket.

Link to comment
Share on other sites

Link to post
Share on other sites

52 minutes ago, Curufinwe_wins said:

It's more that the highest possible dT (between liquid and heatsource/sink) at all possible locations yields the highest performance.

 

For example the radiators are most effective when the water is hottest, and the water blocks are most effective when water is coolest. But if you had in theory a limitless number of heat sources in a row, eventually the water temp would rise enough that even in a single finite pass the liquid would be unable to cool the components, likewise with infinite radiator cooling, the limit is the ambient air temperature. 

 

 

So for example for CPUs, the limit is generally heat transfer through the small die(s) into larger IHS and through thermal paste into the block. Adding a higher performance block and increasing pump speed does relatively little to decrease temperatures at a given load (as load increases, this becomes less true). This is why high end air coolers perform basically the same as AIOs at low load. They hit performance bottlenecks shared between them.

 

For GPUs there is no IHS, and thus direct die cooling combined with a much larger die size means that water cooling is ludicrously more effective and thus temperatures of under 25-30C above ambient are very reasonable to achieve even at very low noise, even while aircoolers struggle to keep GPUs under 50C above ambient.

 

One way to think about heat transfer is through whats called resistance networks. I'm not sure how familiar you are with electrical resistance, but its a very similar analogy. The total thermal resistance (for an one-path problem) can be thought of as the sum of individual resistances. So R_die->IHS+ R_IHS->coolerblock+ R_coolerblock->air=R_total.

 

Given a set Q (energy flow) and set ambient temperature, its possible to calculate the source temperature via the total resistance (this is oversimplifying a bit, but still)

 

For large cpu coolers in particular, the first two resistances are very high and the third resistance is generally low.

 

Tossing out imaginary numbers here, suppose the first resistance is 800 ohms, the second is 200 ohms, and the third is 30 ohms for a total of 1030. Adding an infinite fluid flow and infinite internal block surface area (combined with infinite heat transfer to the air) would reduce the third number to 0 but only drop the total resistance from 1030 to 1000. Hardly a notable change.

I use thermal resistance networks to calculate heat sink sizes for discrete electronic components (mainly audio but occasionally voltage regulators.   I figured the thermal resistance would follow the same rules but wasn't sure about whether the highest resistance was between the die and the fluid  or between the fluid and air at the radiator.  

 

Which means no I am not right, the highest points of resistance fall outside of the realm of the cooling loop therefore direction largely means nothing.  It's not because the cooling system can dissipate x times the heat than the whole circuit produces (although that is also true) it's because the bit that makes the most difference is not effected by fluid flow direction while the smallest component is.

Grammar and spelling is not indicative of intelligence/knowledge.  Not having the same opinion does not always mean lack of understanding.  

Link to comment
Share on other sites

Link to post
Share on other sites

The video was quite informative and somewhat interesting and now I wonder how their methodology will affect the end results.

 

In particular, I'm interested to know whether it will validate what everyone knows about coolers from flawed tests ("this is top tier/this one sucks") or whether we will see some upsets ?

CPU: i7 6950X  |  Motherboard: Asus Rampage V ed. 10  |  RAM: 32 GB Corsair Dominator Platinum Special Edition 3200 MHz (CL14)  |  GPUs: 2x Asus GTX 1080ti SLI 

Storage: Samsung 960 EVO 1 TB M.2 NVME  |  PSU: In Win SIV 1065W 

Cooling: Custom LC 2 x 360mm EK Radiators | EK D5 Pump | EK 250 Reservoir | EK RVE10 Monoblock | EK GPU Blocks & Backplates | Alphacool Fittings & Connectors | Alphacool Glass Tubing

Case: In Win Tou 2.0  |  Display: Alienware AW3418DW  |  Sound: Woo Audio WA8 Eclipse + Focal Utopia Headphones

Link to comment
Share on other sites

Link to post
Share on other sites

While I love his dedication and amount of detail he and his team decided to put in this, I'm pretty sure at the end of the day none of this matters and the results will be within margin of error between testing it the regular way and doing all this. Maybe 2-3 degrees difference.

Link to comment
Share on other sites

Link to post
Share on other sites

2 minutes ago, TheNamelessOne said:

While I love his dedication and amount of detail he and his team decided to put in this, I'm pretty sure at the end of the day none of this matters and the results will be within margin of error between testing it the regular way and doing all this. Maybe 2-3 degrees difference.

It's gonna suck really bad if after all those months of testing and thousands of dollars of new equippment the conclusion will be "Noctua coolers are the best" xD

CPU: i7 6950X  |  Motherboard: Asus Rampage V ed. 10  |  RAM: 32 GB Corsair Dominator Platinum Special Edition 3200 MHz (CL14)  |  GPUs: 2x Asus GTX 1080ti SLI 

Storage: Samsung 960 EVO 1 TB M.2 NVME  |  PSU: In Win SIV 1065W 

Cooling: Custom LC 2 x 360mm EK Radiators | EK D5 Pump | EK 250 Reservoir | EK RVE10 Monoblock | EK GPU Blocks & Backplates | Alphacool Fittings & Connectors | Alphacool Glass Tubing

Case: In Win Tou 2.0  |  Display: Alienware AW3418DW  |  Sound: Woo Audio WA8 Eclipse + Focal Utopia Headphones

Link to comment
Share on other sites

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×